03 Дипольный момент кластеров воды и парниковый эффект

© А.А. Востриков, Д.Ю. Дубов, С.В. Дроздов

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск E-mail: vostrikov@itp.nsc.ru

Поступило в Редакцию 23 июля 2007 г.

Представлены результаты молекулярно-динамических расчетов дипольных моментов нейтральных кластеров воды $(H_2O)_n$ ($n \leq 100$). Моделирование проведено в рамках поляризационной модели Стиллинжера—Дэвида. Рассчитаны спектральные характеристики излучения кластеров. Показано, что кластеры воды, генерируемые летательными аппаратами в тропосфере Земли, могут инициировать тригтерный механизм усиления парникового эффекта за счет реакции $CO_2^* + (H_2O)_n \rightarrow CO_2 + (H_2O)_n^{(*)} \rightarrow CO_2 + (H_2O)_n + hv.$

PACS: 36.40.-c, 61.46.Bc, 31.15.Qg, 92.60.Jq

Нейтральные $(H_2O)_n$, заряженные $H^+(H_2O)_n$, $OH^-(H_2O)_n$ и смешанные, например, $(H_2O)_i(CO_2)_i$ [1] кластеры воды являются важными участниками физико-химических процессов в газовых средах. Прямое влияние на активность кластеров оказывает существование у них электрического дипольного момента μ_n [2,3]. Величина μ_n зависит, во-первых, от среднего дипольного момента отдельных молекул, который из-за дополнительной поляризации в кластере существенно увеличивается (относительно дипольного момента свободной молекулы, 1.855 D) и достигает, по различным данным, 2.4-3.1 D [4,5]. Во-вторых, µ_n определяется относительной ориентацией молекулярных диполей в кластере. Для кластеров воды, состоящих из нескольких молекул, дипольные моменты рассчитаны методами квантовой химии [6] и молекулярной динамики [7]. С увеличением размера резко растет число почти изоэнергетичных конфигурационных изомеров (конформеров), поэтому речь должна идти уже либо о дипольном моменте конкретного конформера, либо (что практически более важно) об усредненном дипольном моменте кластера, величина которого, очевидно, может зависеть и от его температуры. Молекулярно-динамические расчеты, выполненные для кластеров среднего ($n \leq 100$) размера [8], показывают,

87

что при высокой температуре (233 K) дипольные моменты в целом соответствуют случайной ориентации молекулярных диполей, приводящей к размерной зависимости $\mu_n \propto \sqrt{n}$.

Наш интерес к кластерам молекулярных компонентов атмосферы Земли сосредоточен на механизмах и кинетике их образования в сверхзвуковых струях [1,9], участия кластеров в колебательной релаксации молекул [10], полярной фрагментации [11], неупругих столкновений электрона с кластерами [12,13]. Методом пересекающихся пучков кластеров воды и медленных электронов установлено, что при *n* > 30 дипольная составляющая вносит основной вклад в сечение прилипания электрона к кластерам (H₂O)_n [14]. Кластеры каталитически действуют на скорость колебательной релаксации молекул в газовой фазе [10]. Высокая тепловая подвижность молекул в кластере инициирует колебания величины дипольного момента μ_n кластеров воды, что делает их оптически активными в инфракрасной области спектра. В наших пучковых исследованиях [15] было обнаружено, что при пропускании крупных кластеров воды через канал с теплыми стенками кластеры испарялись. В связи с этим возникает вопрос об экологических последствиях эжекции кластеров в атмосферу Земли летательными аппаратами.

Летательные аппараты являются источником нейтральных, заряженных и смешанных кластеров, образующихся из продуктов сгорания топлива и их взаимодействия с компонентами атмосферного воздуха [16]. Большое количество ионов $(10^8 - 10^{11} \text{ cm}^{-3})$ в выхлопных струях двигателей усиливает кластерообразование, а эффект эжекции возбужденных частиц из кластеров [12,13] при их нейтрализации предотвращает полное испарение кластеров. Малые нейтральные кластеры $(H_2O)_n (n < 30)$ в условиях, близких к насыщению, могут жить сколь угодно долго, так как их тепловой энергии недостаточно для испарения даже одной молекулы. Например, минимальная температура, при которой наблюдался отрыв молекулы от кластера (H₂O)_n при n = 2, 3, 4 соответственно, равна 385, 417 и 420 К [17]. Используя MD расчеты энергетических параметров кластеров воды [18], легко получить, что при минимальной температуре ~ 200 К тропосферы Земли средней тепловой энергии всех молекул кластера размером $n \leq 30$ недостаточно для испарения даже одной молекулы. Высокая стабильность малых кластеров к испарению обеспчивает возможность их переноса в северных широтах господствующими потоками и накопления в полярной области Земли. Концентрация дипольных кластеров из

89

молекул воды, в том числе с примесями СО2 и других молекул, может инициировать триггерный механизм усиления парникового эффекта. Рассчитанные в данной работе характеристики дипольного момента кластеров воды свидетельствуют о возможности реализации такого механизма.

В данной статье представлены результаты молекулярно-динамических расчетов дипольных моментов кластеров $(H_2O)_n$ $(n \le 100)$. Моделирование проведено с использованием поляризационной модели Стиллинжера-Дэвида [19]. В данной модели молекула H₂O состоит из двух протонов и двухкратно-ионизованного отрицательного иона кислорода, обладающего скалярной поляризуемостью. Потенциал взаимодействия представляется в виде суммы центральных потенциалов для каждой пары частиц и неаддитивного потенциала, учитывающего энергию поляризации, возникающую из-за наведенного полем окружающих зарядов дипольного момента иона кислорода. Модель обеспечивает правильную геометрию свободной молекулы H₂O (длина OH связи $r_{\rm OH} = 0.9584$ Å, угол НОН $\theta_{\rm HOH} = 104.45^{\circ}$, дипольный момент $\mu = 1.855 \,\mathrm{D}$).

Расчеты проведены методом классической молекулярной динамики для микроканонического ансамбля. Уравнения Ньютона интегрировались методом Рунге-Кутта 4-го порядка с временным шагом 10⁻¹⁶ s. Обрезание потенциала и ограничение испарения молекулы из кластера не применялось. Энергетические и структурные параметры кластеров $(H_2O)_n$, $H^+(H_2O)_n$ и $OH^-(H_2O)_n$ были рассчитаны ранее [18].

В табл. 1 приведены полученные в данной работе значения дипольного момента кластеров μ_n воды при $n \leq 90$, потенциальной энергии U_n и кинетической энергии E_n атомов в кластере. При T > 0 К величина μ_n усреднена по времени в интервале 10^{-6} s. Поиск наиболее стабильной конфигурации кластера при *n* > 10 проводился путем последовательного "нагрева" и "охлаждения" кластера. Минимальная потенциальная энергия U_n при n = 4 - 8, 10 наблюдается при кольцевой геометрии кластеров (табл. 1). Однако кластер (H₂O)₄ при повышении температуры до 170К трансформируется в линейную структуру с $\mu_4(0 \text{ K}) = 8.042 \text{ D}$, а при охлаждении вновь сворачивается в кольцо ($\mu_4(0 \text{ K}) = 0 \text{ D}$). Изменение геометрии кластера при повышении температуры наблюдается также для (H₂O)₁₀: наиболее стабильная плоская геометрическая структура, состоящая из двух колец (бициклическая структура) с тремя общими молекулами и обладающая

$(\mathrm{H_2O})_n$	Т, К	μ_n, D	$-U_n$, eV	$(\mathrm{H_2O})_{\mathit{n}}$	Т, К	μ_n, D	E_n , eV	$-U_n$, eV
2	0	4.024	0.302	4	140	0.035	0.185	1.224
3	0	5.883	0.690	5	140	1.169	0.240	1.852
3	0	4.142	0.491	6	140	0.320	0.296	2.455
4	0	0.000	1.329	7	140	1.080	0.354	2.866
4	0	8.042	1.107	8	140	1.089	0.409	3.294
5	0	0.885	2.025	10	140	3.960	0.487	4.121
5	0	3.064	1.614	10	143	3.435	0.505	3.827
5	0	10.872	1.535	15	140	5.646	0.749	6.678
6	0	0.000	2.652	20	140	2.431	1.061	9.304
7	0	0.369	3.109	30	140	6.984	1.723	13.983
8	0	0.413	3.547	40	140	10.867	2.247	19.030
10	0	5.378	4.483	40	150	9.497	2.408	19.236
10	0	4.879	4.294	50	140	8.781	2.871	24.246
15	0	4.850	7.245	60	140	8.006	3.370	28.566
20	0	2.166	10.023	60	145	8.379	3.490	28.728
30	0	8.560	15.495	70	140	16.208	4.325	34.157
2	140	4.012	0.079	80	158	15.318	5.354	40.128
3	140	5.833	0.127	90	149	12.682	5.381	45.783

Таблица 1. Дипольный момент (μ_n), потенциальная энергия (U_n) и кинетическая энергия атомов (E_n) кластера (H_2O)_n при температуре *T*

Таблица 2. Дипольный момент (μ_{100}), потенциальная энергия (U_{100}) и кинетическая энергия атомов (E_{100}) кластера (H_2O)₁₀₀ при температуре *T*

μ ₁₀₀ , D	<i>Т</i> , К	<i>E</i> ₁₀₀ , eV	$-U_{100}$, eV	μ_{100}, D	Т, К	<i>E</i> ₁₀₀ , eV	$-U_{100}$, eV
68.02	30	1.080	46.795	18.22	100	3.758	49.571
68.85	49	1.873	46.090	46.64	114	4.318	46.644
68.16	58	2.247	45.736	18.64	135	5.306	47.634
21.23	59	2.235	50.895	13.53	153	6.013	48.335
68.00	66	2.528	45.394	—	—	—	—

 $\mu_{10}(140 \text{ K}) = 3.960 \text{ D}$, трансформируется в восьмичленное кольцо с двумя присоединенными молекулами с $\mu_{10}(143 \text{ K}) = 3.435 \text{ D}$. Для $(H_2O)_5$ в табл. 1 приведены величины μ_5 трех топологий: кольцевой (0.885 D), кольцевой четырехзвенной с присоединенной молекулой (3.064 D) и

Рис. 1. Фурье-образ автокорреляционной функции дипольного момента кластера $(H_2O)_n$.

линейной (10.872 D). Из данных, приведенных в табл. 1, видно, что дипольный момент кластеров сильно зависит от структуры кластера: более упорядоченные структуры являются более сильно связанными и обладают меньшим дипольным моментом. В табл. 2 приведены дипольные моменты кластера $(H_2O)_{100}$ при разной температуре и разной степени релаксации. Большое количество локальных минимумов поверхности потенциальной энергии U_{100} затрудняет релаксацию кластеров из-за увеличения времени, особенно при понижении температуры. Однако такая ситуация может происходить и в реальных условиях формирования кластеров. Например, в сверхзвуковых струях, где скорость уменьшения температуры газа ~ 10^7 K/s, а рост кластеров может происходить как последовательным присоединением молекул, так и их коагуляцией, характеристики дипольного момента кластеров одного размера, по-видимому, могут сильно отличаться.

Тепловое движение атомов в кластерах воды вызывает изменение дипольного момента и инициирует ифракрасное излучение. На рис. 1 показаны инфракрасные (ИК) спектры (H_2O)₅ с $\mu_5(140 \text{ K}) = 1.17 \text{ D}$,

Рис. 2. Спектральная плотность энергии излучения кластера $(H_2O)_n$: a - n = 15, b - n = 50, c - n = 100.

 $(H_2O)_{15}$ с $\mu_{15}(140\,K) = 5.65\,D$ и $(H_2O)_{100}$ с $\mu_{100}(160\,K) = 19.27\,D$, полученные Фурье-преобразованием автокорреляционной функции дипольного момента.

На рис. 2 показана спектральная плотность энергии излучения ρ , характеризующая распределение энергии нейтральных кластеров $(H_2O)_{15}$

с $\mu_{15}(140 \text{ K}) = 5.65 \text{ D}$, $(\text{H}_2\text{O})_{50}$ с $\mu_{50}(240 \text{ K}) = 5.82 \text{ D}$ и $(\text{H}_2\text{O})_{100}$ с $\mu_{100}(160 \text{ K}) = 19.27 \text{ D}$. Видно, что кластеры воды обладают высокой радиационной активностью в ИК-области спектра и способны усилить парниковый эффект, создаваемый молекулами CO₂ в атмосфере Земли.

При этом усиление парникового эффекта инициируется следующим процессом:

$$CO_2^* + (H_2O)_n \to CO_2 + (H_2O)_n^{(*)} \to CO_2 + (H_2O)_n + h\nu.$$
 (1)

Это обусловлено тем, что вероятность дезактивации колебательновозбужденных молекул CO_2^* при столкновении с кластерами быстро увеличивается с ростом размера кластеров и при n > 50 стремится к единице [10]. Радиационное время жизни, например, $CO_2^*(001)$ составляет $\sim 3 \cdot 10^{-3}$ s, а среднее время между столкновениями молекул CO_2 с кластерами $(H_2O)_{100}$ на высоте 10 km, равное $3 \cdot 10^{-3}$ s, реализуется при плотности кластеров $3 \cdot 10^{11}$ сm³. Эта величина на два порядка меньше, чем плотность молекул H_2O , и на четыре — чем молекул CO_2 на высоте 10 km в тропосфере Земли. Следовательно, кластеры воды, искусственно генерируемые летательными аппаратами (выхлопными струями и крыльями, вызывающими пересыщение фонового пара воды), могут инициировать усиление парникового эффекта.

Искусственное генерирование кластеров создает не только еще один компонент парниковых газов — кластеры $(H_2O)_n$, но, главное, усиливает действие других парниковых газов. В процессе (1) происходит опосредованная радиационная дезактивация CO_2^* , что фактически уменьшает радиационное время жизни CO_2^* и, как следствие, увеличивается парниковый эффект. Легко показать, что в двух параллельных независимых процессах уменьшение возбужденных частиц CO_2^* будет определяться законом $N^* = N_0^* \exp[-(R_r + R_c)t]$, где N_0^* — количество возбужденных частиц в начальный момент времени, R_r — скорость радиационной дезактивации CO_2^* , $R_c(n)$ — скорость передачи возбуждения кластеру размером n (зависимость $R_c(n)$ см. в [10]). Радиационное время жизни (перехода $CO_2^* \rightarrow CO_2$ в газовой среде с кластерами) $\tau^* = (R_r + R_c)^{-1}$, т.е. при указанной выше плотности кластеров $(H_2O)_{100}(3 \cdot 10^{11} \text{ cm}^3)$ величина τ^* уменьшается в два раза.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проекты 06-03-32751 и 07-02-00825).

Список литературы

- Vostrikov A.A., Dubov D.Yu. // Z. Phys. D Atoms, Molecules and Clusters. 1991. V. 20. P. 429.
- [2] Галашев А.Е., Рахманова О.Р., Чуканов В.Н. // ЖФХ. 2005. Т. 79. С. 1644.
- [3] Sauer J., Doebler J. // ChemPhysChem. 2005. V. 6. P. 1706.
- [4] Gregory J.K., Clary D.C., Liu K., Brown M.G., Saykally R.J. // Science. 1997.
 V. 275. P. 814.
- [5] Batista E.R., Xantheas S.S., Jonsson H. // J. Chem. Phys. 1999. V. 111. P. 6011.
- [6] Yang M., Senet P., van Alsenoy C. // Intern. J. Quantum Chem. 2005. V. 101. P. 535.
- [7] Kabrede H., Hentschke R. // J. Phys. Chem. B. 2003. V. 107. P. 3914.
- [8] Галашев А.Е., Рахманова О.Р. // ЖСХ. 2005. Т. 46. С. 648.
- [9] Востриков А.А., Дубов Д.Ю. // ЖЭТФ. 2004. Т. 125. С. 222.
- [10] Vostrikov A.A., Mironov S.G. // Chem. Phys. Lett. 1983. V. 101. P. 583.
- [11] Vostrikov A.A., Zadorozhny A.M., Dubov D.Yu., Witt G., Kazakova I.V., Bragin O.A., Kazakov V.G., Kikhtenko V.N., Tutin A.A. // Z. Phys. D — Atoms, Molecules and Clusters. 1997. V. 40. P. 542.
- [12] Востриков А.А. // ЖТФ. 1984. Т. 54. В. 2. С. 327.
- [13] Vostrikov A.A., Gilyova V.P., Dubov D.Yu. // Z. Phys. D Atoms, Molecules and Clusters. 1991. V. 20. P. 205.
- [14] Востриков А.А., Дубов Д.Ю. // ЖТФ. 2006. Т. 76. В. 12. С. 1.
- [15] Востриков А.А., Дубов Д.Ю., Предтеченский М.Р. // ЖТФ. 1987. Т. 57. В. 4. С. 760.
- [16] Артюхин А.С., Егоров Б.В., Забабурин Е.А., Кощеев А.В., Маркачев Ю.Е., Плеханов Е.А., Уфимцев И.С., Хлопков А.Ю., Чугреев А.Л. // Хим. Физ. 2004. Т. 23. № 4. С. 26.
- [17] Дроздов С.В., Востриков А.А. // Письма в ЖТФ. 2000. Т. 26. В. 9. С. 81.
- [18] Vostrikov A.A., Drozdov S.V., Rudnev V.S., Kurkina L.I. // Comp. Mat. Sci. 2006. V. 35. P. 254.
- [19] Stillinger F.H., David C.W. // J. Chem. Phys. 1978. V. 69. P. 1473.