03

Отрыв ламинарного сверхзвукового пограничного слоя с источником энерговыделения

© О.Б. Ларин, В.А. Левин

Институт механики Московского государственного университета им. М.В. Ломоносова, Москва E-mail: larin@imec.msu.ru Институт автоматики и процессов управления ДВО РАН, Владивосток E-mail: levin@iacp.dvo.ru

Поступило в Редакцию 18 июня 2007 г.

Численно исследовано влияние электрического разряда в сверхзвуковом газовом потоке на отрыв ламинарного пограничного слоя. Электрический разряд моделируется источником энерговыделения заданной интенсивности и конфигурации. В широком диапазоне значений мощности источника установлено различие потоков с теплоизолированными и охлаждаемыми стенками. Показана возможность управления отрывом пограничного слоя.

PACS: 44.20.+b, 52.80.-s

Исследование воздействия электрических разрядов на аэродинамические характеристики высокоскоростных газовых потоков представляет значительный интерес, связанный с рядом практических приложений [1,2]. В настоящей работе используется широко распространенная модель теплового источника [1], в соответствии с которой удельный энерговклад в поток считается известной функцией координат и времени. Влияние электродов на течение не учитывается.

1

Рассматривается стационарное обтекание тела плоским сверхзвуковым потоком при наличии электрического разряда в ламинарном пограничном слое. Электрический разряд моделируется прямоугольной областью тепловыделения. В отсутствие внешних массовых сил система уравнений, определяющих движение совершенного газа, имеет вид

$$\frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0, \tag{1}$$

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{du}{dy} = -\frac{dp}{dx} + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right), \qquad (2)$$

$$\rho u \frac{\partial H}{\partial x} + \rho v \frac{\partial H}{\partial y} = \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} + \mu u \frac{\partial u}{\partial y} \right) + \rho Q, \tag{3}$$

$$\rho = \frac{pm}{RT}, \quad H = I + \frac{u^2}{2}, \quad \lambda = \frac{\mu c_p}{\Pr}.$$

Здесь u, v — проекции вектора скорости на оси ортогональных координат x (вдоль поверхности) и y (по нормали к ней) соответственно; ρ — плотность; p — давление; T — температура; I — энтальпия; Q = Q(x, y) — удельное количество тепла, подведенное в единицу времени к данной точке среды извне; m — молекулярная масса газа; R — универсальная газовая постоянная; μ — динамический коэффициент вязкости; c_p — удельная теплоемкость газа при постоянном давлении; Pr — число Прандтля (два последние параметра считаются постоянными).

На поверхности обтекаемого тела y = 0 выполняются условия u = 0, v = 0, а также $(\partial T / \partial y)_w = 0$ для теплоизолированной стенки или $T = T_w$ для изотермической.

Характеристики потока на внешней границе пограничного слоя, отмеченные ниже индексом *e*, удовлетворяют уравнениям

$$\rho_e u_e \frac{du_e}{dx} = -\frac{dp}{dx}, \qquad \rho_e u_e \frac{dH_e}{dx} = \rho_e Q_e. \tag{4}$$

Задача решается численно методом конечных разностей. При этом используется неявная безусловно устойчивая разностная схема [3], которая обеспечивает аппроксимацию второго порядка относительно пространственных шагов сетки и обладает хорошими стабилизирующими свойствами.

Рис. 1. Изменение местного коэффициента поверхностного трения по длине теплоизолированной пластины. Удельный теплоподвод q: 1 - 0, 2 - 2, 3 - 4, 4 - 8, 5 - 16, 6 - 32, 7 - 64.

Рассмотрим заторможенный поток около критической точки с линейным распределением скорости на внешней границе пограничного слоя

$$u_e = u_0(1-\xi), \qquad \xi = \frac{x}{L}.$$
 (5)

Подобный характер имеет, например, течение вдоль плоской стенки, которое при x = L наталкивается на другую стенку, неограниченную и перпендикулярную первой. Для несжимаемой жидкости пограничный слой с "односкатным" профилем скорости (5) исследовался Хоуартом [4], представившим функцию тока степенным разложением по ξ . Как было установлено, значение безразмерной координаты точки отрыва приблизительно равно $\xi_s = 0.12$.

При расчетах предполагается, что число Маха $M_0 = 3$, число Прандтля Pr = 0.72 и отношение удельных теплоемкостей $\gamma = 1.4$. Для коэффициента вязкости μ принимается степенная температурная

Рис. 2. Изменение пристенной температуры газа по длине теплоизолированной пластины. Удельный теплоподвод q: 1 - 0, 2 - 2, 3 - 4, 4 - 8, 5 - 16, 6 - 32, 7 - 64.

зависимость с показателем степени $\omega = 0.76$. Внешний теплоподвод с постоянным параметром $q = Q(c_p T_0 u_0)^{-1}L$ реализуется в прямоугольной области

$$0.05 < \xi \le 0.10,$$
 $0.4 \le y \operatorname{Re}_0^{0.5} / L \le 1.0,$ (6)
 $\operatorname{Re}_0 = \rho_0 u_0 L / \mu(T_0),$

которая полностью находится внутри пограничного слоя (используется обозначение $f_0 = f_e(0)$). Давление p = p(x) находится из уравнений (4) с учетом зависимости (5).

Распределения местного коэффициента поверхностного трения $c_f = 2\tau_w \rho_e^{-1} u_e^{-2}$ для теплоизолированной стенки представлены на рис. 1. Здесь $\tau_w = (\mu \partial u / \partial y)_{y=0}$ — напряжение трения; число Рейнольдса $\text{Re}_0 = 10^6$. Кривые I-7 соответствуют значениям параметра удельного теплоподвода q = 0, 2, 4, 8, 16, 32, 64. При q = 0

Рис. 3. Изменение местного коэффициента поверхностного трения по длине изотермической охлаждаемой пластины. Удельный теплоотвод *q*: *1* — 0, *2* — 2. *3* — 4, *4* — 8, *5* — 16, *6* — 32, *7* — 64.

значение относительной координаты точки, в которой обращается в нуль поверхностное трение, несколько меньше, чем для несжимаемой жидкости. Энерговыделение вызывает оттеснение линий тока от стенки, утолщение пограничного слоя и снижение поверхностного трения. С ростом параметра q точка отрыва перемещается вверх по потоку. Важно отметить, что при увеличении числа Рейнольдса Re_0 кривые рисунка равномерно сжимаются к оси абсцисс пропорционально $\text{Re}_0^{-0.5}$. Поэтому относительные координаты точки отрыва не меняются при изменении числа Рейнольдса до тех пор, пока пограничный слой остается ламинарным. Значения пристенной температуры газа приведены на рис. 2.

Рис. З показывает аналогичные распределения коэффициента поверхностного трения для изотермической охлаждаемой стенки. Считается, что $T_w = T_0$, $\text{Re}_0 = 10^6$. Здесь при отсутствии теплоподвода величина относительной координаты $\xi_s = 0.174$ значительно больше,

чем в задаче Хоуарта [4]. Для любой интенсивности энерговыделения отрыв пограничного слоя на охлаждаемой стенке существенно задерживается по сравнению с теплоизолированной стенкой. Вместе с тем за исключением случая q = 64, отрыв происходит вниз по потоку от области теплоподвода (6).

Список литературы

- [1] Георгиевский П.Ю., Ершов А.П., Левин В.А., Тимофеев И.Б., Шибков В.М. // ТВТ. 2006. Т. 44. № 1. С. 5.
- [2] Levin V.A., Larin O.B. // 41st Aerospace Sciences Meeting & Exhibit. Reno, Nevada, USA. January 6–9, 2003. AIAA-2003-0036.
- [3] Ларин О.Б., Левин В.А. // ПМТФ. 2001. Т. 42. № 1. С. 98.
- [4] Howarth L. // Proc. Roy. Soc. London. Ser. A. 1938. V. 164. N 919. P. 547.