15

Изменение поляризуемости молекул МВВА при переходе нематик-изотропная жидкость и физические следствия

© Е.М. Аверьянов

Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: aver@iph.krasn.ru

(Поступила в Редакцию 18 марта 2013 г.)

Получены экспериментальные значения компонент L_j и γ_j тензоров Лорентца и поляризуемости молекул жидкого кристалла 4-метоксибензилиден-4'-бутиланилина (MBBA) в нематической и изотропной фазах. Установлены квадратичные зависимости среднего значения $\bar{\gamma}(S)$ и анизотропии $\Delta \gamma(S)$ поляризуемости в нематической фазе от параметра ориентационного порядка молекул S. В рамках феноменологического подхода дан вывод зависимостей $\bar{\gamma}(S)$, $\Delta \gamma(S)$ и объяснены их особенности для MBBA и других известных объектов. Выяснена связь зависимостей $\bar{\gamma}(S)$, $\Delta \gamma(S)$ с особенностями фазового перехода нематик—изотропная жидкость.

1. Введение

Жидкие кристаллы (ЖК) являются общей моделью самоорганизованных анизотропных молекулярных сред. Это обусловливает интерес к проявлениям самоорганизации ЖК в свойствах молекул, особенностях их структурной упорядоченности и фазовых переходах [1]. Свойства молекул характеризуются молекулярными восприимчивостями разного ранга, из которых наиболее важна поляризуемость молекул γ [2,3]. Компоненты γ_{ij} , зависящие от электронной структуры и конформации молекулярных фрагментов, определяют анизотропные межмолекулярные взаимодействия и устойчивость мезофаз [1,4]. Вместе с тем, в результате возмущения электронной структуры и изменения конформации молекулярных фрагментов в ЖК из-за межмолекулярных взаимодействий ближнего и дальнего порядков сами компоненты уіі зависят от характера и степени упорядоченности молекул в ЖК [1], то есть поляризуемость и структурная упорядоченность молекул в ЖК изменяются взаимосогласованно. Для выяснения следствий этого в отношении фазовых переходов в ЖК необходимо установить характер зависимости компонент γ_{ij} от параметров порядка ЖК.

Экспериментальное решение этой задачи пока возможно для термотропных одноосных ЖК, что обусловлено двумя обстоятельствами. Во-первых, для определения компонент γ_j , усредненных по ориентациям молекул в системе осей эллипсоида рефракции ЖК, необходимо учитывать отличие локального поля $E_j^{(loc)}(\omega)$ световой волны, поляризующего молекулу, от макроскопического поля $E_j(\omega)$ световой волны в среде [5]. Эти поля связаны выражением $E_j^{(loc)} = f_j E_j$. Компоненты $f_j = 1 + L_j(\varepsilon_j - 1)$ тензора локального поля, диагонального в этой системе координат, связаны с компонентами L_j диагональных тензоров Лорентца (SpL = 1) и диэлектрической проницаемости ε_j . Метод определения величин L_j из экспериментальных данных [6], свободный от априорных предположений о ненаблюдаемых

свойствах молекул, разработан пока для одноосных молекулярных сред. Во-вторых, в одноосных ЖК при свободном вращении молекул вокруг их продольных осей I (эффективной одноосности тензора γ) двух измеряемых значений γ_j достаточно для определения продольной (γ_l) и поперечной (γ_t) компонент тензора γ при наличии абсолютных значений параметра ориентационного порядка молекул S, полученного независимыми методами. Это определило выбор нематического ЖК 4-метоксибензилиден-4'-бутиланилина (MBBA) с молекулярной формулой

$$H_3CO \longrightarrow CH=N \longrightarrow C_4H_9$$

в качестве объекта настоящего исследования.

Цели данной работы: изучение экспериментальных зависимостей $L_j(T)$, $\gamma_{l,t}(\lambda, S)$ от температуры нематической фазы MBBA, длины световой волны λ и параметра порядка *S*; интерпретация зависимостей $\gamma_{l,t}(S)$ в рамках феноменологического подхода с выяснением их влияния на фазовый переход нематик–изотропная жидкость (N–I).

2. Определение компонент L_i

Для одноосного ЖК с *N* одноосными молекулами в единице объема тензор *у* характеризуется параметрами $\bar{\gamma} = (\gamma_l + 2\gamma_l)/3$, $\Delta \gamma = \gamma_l - \gamma_t$. В системе координат директора **n** в видимой области прозрачности имеем $\varepsilon_j = n_j^2$, n_j — показатели преломления ЖК для световых волн, поляризованных вдоль (j = ||) и нормально **n** $(j = \perp)$. Введем параметры $\bar{\varepsilon} = (\varepsilon_{||} + 2\varepsilon_{\perp})/3$, $Q = (\varepsilon_{||} - \varepsilon_{\perp})/(\bar{\varepsilon} - 1)$ и величины

$$r_{0} = 1 - \frac{2Q^{2}(\bar{\varepsilon} - 1)}{3(3+Q)(\bar{\varepsilon} + 2)}, \quad b = \frac{3(\bar{\varepsilon} - 1)}{4\pi N\bar{\gamma}(\bar{\varepsilon} + 2)} - r_{0},$$
$$b_{1} = \frac{2r_{0}Q^{2}}{(3-Q)(3+2Q)}, \quad b_{2} = b_{1}[(6+Q)/Q]^{2}.$$
(1)

Искомая компонента $L_{\perp}(L_{\parallel} = 1 - 2L_{\perp})$ связана с этими величинами выражением [7]

$$L_{\perp} = L_{\perp k} - \frac{(\bar{\epsilon} + 2)}{12(\bar{\epsilon} - 1)} \\ \times \left[(b_1 b_2)^{1/2} - b - [(b_1 - b)(b_2 - b)]^{1/2} \right], \quad (2)$$

где $L_{\perp k} = (3+2Q)/[3(3+Q)]$. Функция $b(\lambda, T)$ зависит от неизвестной функции $\bar{p}(\lambda, T)$, а знаки b и $\Delta f = f_{\parallel} - f_{\perp}$ совпадают [7]. Равенство $L_{\perp} = L_{\perp k}$ отвечает условию $\Delta f = b = 0$. Без априорных предположений о функции $\bar{p}(\lambda, T)$ при заданной температуре ЖК неизвестные $L_{\perp}(T)$ и $b(\lambda, T)$ определяются следующим образом [6]. При известных значениях $n_j(\lambda_i, T)$ для дискретного набора величин λ_i (i = 1 - p) в видимой области функция $b(\lambda, T)$ в интервале $\lambda_1 - \lambda_p$ аппроксимируется полиномом

$$b(\lambda, T) = a_0(T) + a_1(T)\lambda + \ldots + a_m(T)\lambda^m.$$
(3)

Значение $L_{\perp}(T)$ не зависит от λ , и температуре T нематической фазы отвечают m + 2 неизвестных величин $\{L_{\perp}^{(m)}, a_0 - a_m\}$. Они находятся из системы m + 2 = p уравнений (2), каждое из которых соответствует одному из значений λ_i . Более высокое приближение в (3) требует более высокой точности значений $n_j(\lambda, T)$, иначе система уравнений на $\{L_{\perp}^{(m)}, a_0 - a_m\}$ может не иметь физических решений. Критерием адекватности используемого приближения в (3) является согласие значений $L_{\perp}^{(m)}$ с величинами $\langle L_{\perp}^{(m-1)} \rangle$, усредненными по значениям $L_{\perp}^{(m-1)}$, которые отвечают всем возможным сочетаниям p - 1 реперов λ_i из набора $\lambda_1 - \lambda_p$ [6].

Зависимости $n_i(\lambda, \Delta T)$ для нематической и изотропной фаз МВВА табулированы в работе [8] при $\lambda_1 = 0.4678$, $\lambda_2 = 0.48$, $\lambda_3 = 0.5086$, $\lambda_4 = 0.5893$ и $\lambda_5 = 0.6438 \,\mu$ m. Здесь $\Delta T = T_{\rm NI} - T$, $T_{\rm NI}$ — температура перехода N–I. Степени $m \ge 1$ полинома (3) неадекватны точности значений $n_i(\lambda, T)$ [8], поскольку зависимости $L_{\perp}^{(3)}(\Delta T), \langle L_{\perp}^{(2)}(\Delta T) \rangle$ нерегулярны и различаются между собой, а при отдельных значениях ΔT и сочетаниях величин λ_i физические решения для $L_{\perp}^{(1,2)}$ отсутствуют. Для $L^{(0)}_{\perp}(\Delta T)$ физические решения системы уравнений (2) существуют для всех значений ΔT и всех пар $\lambda_{k,n}$ из набора λ_i . Стандартные отклонения $L^{(0)}_{\perp}(\Delta T)$ от средних $\langle L_{\perp}^{(0)}(\Delta T)
angle$ не превышают 0.005. В пределах точности величин $\langle L_{\perp}^{(1)}(\Delta T) \rangle$ и $\langle L_{\perp}^{(2)}(\Delta T) \rangle$ они согласуются с зависимостью $\langle L_{\perp}^{(0)}(\Delta T) \rangle$ соответственно во всей нематической фазе и при $\Delta T \ge 16^\circ$. Таким образом, следует принять $L_{\perp}(\Delta T) = \langle L_{\perp}^{(0)}(\Delta T) \rangle$, эта зависимость приведена на рис. 1.

Между зависимостями $L_{\perp}(\Delta T)$ и $L_{\perp k}(\Delta T, \lambda)$ существует корреляция

$$L_{\perp}(\Delta T) = A(\lambda)L_{\perp k}(\Delta T, \lambda) + B(\lambda), \qquad (4)$$

Рис. 1. Температурные зависимости компоненты L_{\perp} (*I*) и параметра ориентационного порядка молекул *S* в нематической фазе MBBA по данным ЯМР на ¹³С [9] (*2*) и ²H из работ [10,11] (*3*) и [12] (*4*). Сплошные линии (*I*) и (*5*) — зависимость (*4*) при $\lambda = 0.5893 \,\mu$ m и зависимость (7) с указанными в тексте параметрами соответственно.

параметры которой связаны выражением $B \approx (1 - A)/3$. При $\lambda = \lambda_4$ зависимость (4) с параметрами A = 1.631и B = -0.203 приведена на рис. 1. Из (4) следует соотношение

$$A = (L_{\perp} - 1/3)/(L_{\perp k} - 1/3) \approx \text{const.}$$
 (5)

С учетом малости $Q \ll 3$ имеем $(L_{\perp k} - 1/3) \propto Q$. С другой стороны, в линейном по *S* приближении выполняется $Q \propto S$ [5] и из (5) получаем $(L_{\perp} - 1/3) \propto S$.

3. Зависимости $\bar{\gamma}(S), \Delta \gamma(S)$ в нематической фазе

Для одноосного ЖК компоненты ε_j , γ_j и L_j связаны соотношением [5]

$$\varepsilon_j = 1 + 4\pi N \gamma_j [1 + L_j(\varepsilon_j - 1)], \quad (j = \parallel, \perp), \qquad (6)$$

из которого находятся параметры $\bar{\gamma} = (\gamma_{\parallel} + 2\gamma_{\perp})/3$, $\Delta \gamma = (\gamma_{\parallel} - \gamma_{\perp})/S$, $\gamma_l = \bar{\gamma} + 2\Delta\gamma/3$, $\gamma_t = \bar{\gamma} - \Delta\gamma/3$. Здесь $S = \langle 3 \cos^2 \theta - 1 \rangle/2$, θ — угол между молекулярной осью **l** и **n**, скобки $\langle \dots \rangle$ означают усреднение по молекулярному ансамблю. В шкале ΔT величины $n_j(\Delta T)$, $S(\Delta T)$ и плотность $\rho(\Delta T)$ для разных образцов слабо чувствительны к различию $T_{\rm NI}$ из-за наличия примесей. В данной работе эти величины для разных образцов МВВА комбинируются при одинаковых значениях ΔT . Абсолютные значения *S* для МВВА, полученные методами ЯМР на ¹³С [9] и ²Н [10–12], приведены на рис. 1. Они аппроксимировались функцией [13]

$$S = S_0 (1 - T/T_H)^{\beta_H}$$
(7)

с $T_{\rm NI}=317.16\,{\rm K}$ [8], $S_0=0.978\pm0.028,~T_H-T_{\rm NI}=$ = 0.78 ± 0.17°С, $\beta_H=0.211\pm0.009.$ Значения $L_{\perp}(\Delta T)$ на рис. 1, *S* (7) и $\rho(\Delta T)$ [14] использовались в (6) для определения величин $\gamma_j(\Delta T, \lambda)$, $\gamma_{l,t}(\Delta T, \lambda)$ из показателей преломления $n_j(\Delta T, \lambda)$ [8].

В нематической фазе MBBA температурное изменение параметров $\bar{\gamma}$, $\gamma_{l,t}$ и $\Delta \gamma$ при всех значениях λ_{1-5} наилучшим образом аппроксимируется функцией

$$\Gamma(\lambda, S) = \Gamma_0(\lambda) + \Gamma_2(\lambda)S^2 \tag{8}$$

с коэффициентами, указанными в таблице. На рис. 2 приведены типичные зависимости $\bar{\gamma}$ и γ_t от S^2 при $\lambda = \lambda_{1,5}$. Величины Γ_0 отвечают значениям параметров $\bar{\gamma}$, $\Delta \gamma$, $\gamma_{l,t}$ при S = 0. Это подтверждается хорошим согласием величин $\Gamma_0(\bar{\gamma}, \lambda)$ со значениями $\bar{\gamma}_i(\lambda)$ в изотропной фазе MBBA при всех значениях λ_{1-5} . Зависимости $\Gamma_{0,2}(\lambda)$ для $\bar{\gamma}$, γ_l , $\Delta \gamma$ имеют нормальную дисперсию в интервале λ_{1-5} . Для установления электронных переходов, ответственных за эту дисперсию, зависимости $\bar{\gamma}$, γ_l , $\Delta \gamma$, $\Gamma_{0,2}$ от λ в интервале λ_{1-5} аппроксимировались функцией

$$y = y_b + P\lambda^2 / (\lambda^2 - \lambda_r^2).$$
(9)

Использование этой процедуры в нематической фазе при каждом значении ΔT дало величины $\lambda_r(\bar{\gamma}) =$ = 0.298 ± 0.015, $\lambda_r(\gamma_l) = 0.301 \pm 0.011$ и $\lambda_r(\Delta \gamma) =$ = 0.305 ± 0.011 µm, не имеющие регулярного температурного поведения. Они локализованы между максимумами $\lambda_{n\pi} = 0.285$ и $\lambda_{\pi\pi} = 0.325 \,\mu$ m длинноволновых

Коэффициенты $\Gamma_{0,2}$ (Å³) зависимости (8) для величин Γ , коэффициенты корреляции R и параметры $\kappa = \Gamma_2/\Gamma_0$ при указанных значениях λ , μ m

Г	λ	Γ_0	Γ_2	R	κ
$\bar{\gamma}$	0.4678	37.87	5.60	0.9893	0.1479
	0.4800	37.60	5.29	0.9978	0.1407
	0.5086	36.99	5.08	0.9979	0.1373
	0.5893	35.94	4.60	0.9956	0.1280
	0.6438	35.63	4.12	0.9949	0.1156
	∞	34.14	3.00	0.9230	0.0879
γı	0.4678	67.42	9.04	0.8797	0.1341
	0.4800	66.72	8.10	0.9349	0.1214
	0.5086	64.71	7.98	0.9373	0.1233
	0.5893	61.24	8.45	0.9698	0.1380
	0.6438	60.55	6.15	0.9296	0.1016
	∞	56.00	4.02	0.8321	0.0718
γ_t	0.4678	23.11	3.86	0.9451	0.1670
	0.4800	23.03	3.88	0.9626	0.1685
	0.5086	23.13	3.61	0.9441	0.1561
	0.5893	23.29	2.68	0.9549	0.1151
	0.6438	23.16	3.12	0.9684	0.1347
	∞	23.36	2.06	0.9109	0.0882
$\Delta \gamma$	0.4678	44.31	5.21	0.6060	0.1176
	0.4800	43.69	4.22	0.6818	0.0966
	0.5086	41.58	4.41	0.6998	0.1061
	0.5893	37.95	5.77	0.8944	0.1520
	0.6438	37.40	3.02	0.6526	0.0807
	∞	32.74	2.06	0.6891	0.0629

Рис. 2. Зависимость величин $\bar{\gamma}$ (1, 2) и γ_t (3) от S^2 в нематической фазе MBBA при $\lambda = 0.4678$ (1) и 0.6438 μ m (2, 3). График (3) смещен вверх на 10 Å³. Сплошные линии — зависимости (8) с табличными коэффициентами.

электронных полос поглощения MBBA [15,16], относящихся к переходам типа $n-\pi^*$ и $\pi-\pi^*$ с поляризацией вдоль связи *N*-phenyl молекулы MBBA [17]. Эти переходы определяют дисперсию $\bar{\gamma}(\lambda)$, $\gamma_l(\lambda)$, $\Delta\gamma(\lambda)$ в видимой области. Коэффициент y_b в (9) дает фоновые значения $\bar{\gamma}_b$, $\gamma_{l,t}^{(b)}$ и $\Delta\gamma_b$, обусловленные более коротковолновыми переходами. В нематической фазе температурное изменение величин $\bar{\gamma}_b$, $\gamma_{l,t}^{(b)}$, $\Delta\gamma_b$ отсутствует. Температурное изменение параметров $\bar{\gamma}_{\infty}$, $\gamma_{l,t}^{(\infty)}$ и $\Delta\gamma_{\infty}$, отвечающих пределу $\lambda \to \infty$ и полученных из аппроксимации (9), характеризуется функцией (8) с коэффициентами, приведенными в таблице.

Аппроксимация значений $\Gamma_0(\lambda)$ для $\bar{\gamma}$, γ_l , $\Delta\gamma$ функцией (9) дала величины $\lambda_r(\bar{\gamma}) = 0.311$, $\lambda_r(\gamma_l) = 0.320$ и $\lambda_r(\Delta\gamma) = 0.324\,\mu$ m, близкие к тем же для нематической фазы и экспериментальным [15,16]. Значения $\Gamma_0^{(\infty)} = \Gamma_0(\lambda \to \infty)$ для $\bar{\gamma}$, γ_l , $\Delta\gamma$ совпадают с коэффициентами Γ_0 формулы (8) для параметров $\bar{\gamma}_\infty$, $\Delta\gamma_\infty$ и $\gamma_l^{(\infty)}$. Коэффициенты *P* функции (9) даются выражениями

$$P(\bar{\gamma}) = D/3, \ P(\gamma_l) = D(1 + 2S_\beta)/3, \ P(\Delta \gamma) = DS_\beta.$$
 (10)

Здесь D = const, $S_{\beta} = (3 \cos^2 \beta - 1)/2$, β — угол между молекулярной осью **l** и направлением дипольного момента электронного перехода, ответственного за дисперсию $\Gamma_0(\lambda)$ в интервале λ_{1-5} . Из формул (9), (10) следуют соотношения

$$w_{0}^{(1)} = \frac{\Gamma_{0}(\Delta\gamma) - \Gamma_{0}^{(b)}(\Delta\gamma)}{\Gamma_{0}(\bar{\gamma}) - \Gamma_{0}^{(b)}(\bar{\gamma})} = 3S_{\beta},$$

$$w_{0}^{(2)} = \frac{\Gamma_{0}(\gamma_{l}) - \Gamma_{0}^{(b)}(\gamma_{l})}{\Gamma_{0}(\Delta\gamma) - \Gamma_{0}^{(b)}(\Delta\gamma)} = (1 + 2S_{\beta})/3S_{\beta}$$
(11)

и $w_0^{(3)} = w_0^{(1)} w_0^{(2)} = 1 + 2S_\beta$, которые использовались для определения величин $\cos^2\beta$. Значения $w_0^{(1-3)}(\lambda_{1-5})$,

ı

полученные из данных таблицы, а также величин $\Gamma_0^{(b)}(\bar{\gamma}) = 29.47$, $\Gamma_0^{(b)}(\gamma_l) = 43.05$ и $\Gamma_0^{(b)}(\Delta \gamma) = 20.23$ Å³, дают $\cos^2\beta = 0.962 \pm 0.013$ и угол $\beta = 11.2^\circ \pm 2^\circ$. Он близок к углу $\beta^* \approx 10^\circ$ между связью *N*-phenyl и осью, проходящей через центры фенильных колец молекулы MBBA и принимаемой в качестве молекулярной оси I при анализе данных ЯМР [9–12]. Это подтверждает определяющий вклад переходов $n-\pi^*$ и $\pi-\pi^*$, поляризованных вдоль связи *N*-phenyl, в дисперсию параметров $\bar{\gamma}(\lambda)$, $\gamma_l(\lambda)$, $\Delta \gamma(\lambda)$ в видимой области. Низкое значение β объясняет слабую дисперсию $\gamma_t(\lambda)$.

Аппроксимация зависимостей $\Gamma_2(\lambda)$ для γ_l и $\Delta \gamma$ функцией (9) в интервале $\lambda_{1-3,5}$ без учета флуктуаций $\Gamma_2(\lambda_4)$ дает значения $\lambda_r(\gamma_l) = 0.304$ и $\lambda_r(\Delta \gamma) = 0.327 \,\mu$ m, близкие к $\lambda_{n\pi}$ и $\lambda_{\pi\pi}$, вместе с величинами $\Gamma_2^{(\infty)}$, совпадающими с коэффициентами $\Gamma_2(\gamma_l^{(\infty)})$ и $\Gamma_2(\Delta \gamma_{\infty})$ формулы (8) в таблице. Это показывает связь коэффициента $\Gamma_2(\lambda)$ с изменением сил осцилляторов $f_{n\pi}(S)$ и $f_{\pi\pi}(S)$ переходов $n-\pi^*$ и $\pi-\pi^*$, что коррелирует с экспериментальной зависимостью $f_{\pi\pi}(S)$ типа (8) в нематической фазе MBBA [18].

Электронная структура MBBA чувствительна к углу φ_N между фрагментом C(H)=N и анилиновым кольцом [17]. Для отдельной молекулы MBBA в газе или изотропной среде (изотропной фазе ЖК) справедливы выражения $f_{\pi\pi}(\varphi_N) \propto \cos^2 \varphi_N$, $f_{n\pi}(\varphi_N) \propto \sin^2 \varphi_N$ [1,17]. Для ЖК измеряемым параметром конформационного состояния его молекул является средняя по ансамблю величина $Q_2 = \langle \cos^2 \varphi_N \rangle$ [1], от которой зависят измеряемые силы осцилляторов $f_{\pi\pi} \propto Q_2$, $f_{n\pi} \propto (1-Q_2)$. Следствием изменения параметра Q_2 в нематической фазе MBBA [19]

$$Q_2 = Q_{2i} + \eta S^2 \tag{12}$$

относительно его значения Q_{2i} в изотропной фазе являются квадратичные зависимости $f_{\pi\pi}(S)$ и $f_{n\pi}(S)$, которые дают вклад в квадратичные зависимости (8) для измеряемых параметров поляризуемости. Сравнение величин $\kappa = \Gamma_2/\Gamma_0$ для параметров $\bar{\gamma}$, $\Delta \gamma$ в нематических фазах MBBA, 4-*n*-алкил-4'-цианобифенилов (*n*CB) [1,5] и 4-нитрофенил-4'-октилоксибензоата (NP8OB) [20] показывает, что конформационный вклад (изменение Q_2) в коэффициент Γ_2 не является единственным. Для *n*CB величина $\Gamma_2(\Delta \gamma)$ определяется зависимостью $f_{\pi\pi}(\varphi) \propto \cos^2 \varphi$ силы осциллятора длинноволнового электронного $\pi - \pi^*$ -перехода от угла ϕ между фенильными кольцами бифенильного фрагмента [21] и изменением $Q_2(S)$ в нематической фазе согласно (12) [19]. В видимой области величины $\kappa(\bar{\gamma})$ для MBBA близки к тем же для 5CB и 7CB [1,5], тогда как величины $\kappa(\Delta \gamma)$ для MBBA существенно ниже значений $\kappa(\Delta \gamma) > 0.5$ для этих гомологов *n*CB. Отношения $\Gamma_2(\Delta \gamma)/\Gamma_2(\bar{\gamma}) > 3$ для *n*CB значительно выше тех же для MBBA. Для нематической фазы NP8OB зависимостям $\bar{\gamma}, \gamma_{l,t}, \Delta \gamma$ от S в видимой области отвечают положительные (отрицательные) значения Γ_2 для $\bar{\gamma}, \gamma_t(\Delta \gamma, \gamma_l)$ [20]. Эти факты показывают наличие отрицательного вклада в $\Gamma_2(\Delta \gamma)$, связанного с межмолекулярными взаимодействиями в ЖК, наряду с положительным конформационным вкладом. Установление общей зависимости (8) для параметров поляризуемости в нематических ЖК позволяет перейти к ее интерпретации и выяснению физических следствий в рамках феноменологического подхода, не ограниченного конкретными типами межмолекулярных взаимодействий.

4. Следствия зависимостей $\bar{y}(S), \Delta y(S)$

Тензор молекулярной поляризуемости γ , усредненный по ориентациям молекул относительно директора **n** в произвольной системе координат, можно представить в виде $\gamma = \bar{\gamma} \mathbf{E} + (2/3)\Delta\gamma \mathbf{S}$, где \mathbf{E} — единичный тензор с компонентами $E_{ik} = \delta_{ik}$, \mathbf{S} — тензорный параметр порядка нематика с компонентами $S_{ik} = S(3n_in_k - \delta_{ik})/2$, $n_{i,k}$ — компоненты директора **n** в данной системе координат [22]. В системе директора **n** || Z диагональному тензору $\mathbf{S}(-S/2, -S/2, S)$ с указанными компонентами соответствует диагональный тензор $\gamma(\gamma_{\perp}, \gamma_{\perp}, \gamma_{\parallel})$ с компонентами $\gamma_{\perp} = \bar{\gamma} - \Delta\gamma S/3$, $\gamma_{\parallel} = \bar{\gamma} + 2\Delta\gamma S/3$. Зависимости $\bar{\gamma}(S)$, $\Delta\gamma(S)$ минимизируют плотность свободной энергии нематика

$$\Delta F = \Delta F_S + \Delta F_{\gamma} + \Delta F_{S\gamma}. \tag{13}$$

Слагаемое ΔF_S , обусловленное ориентационной упорядоченностью молекул в отсутствие связи тензоров **S** и *p*, имеет вид [22]

$$\Delta F_S = a(T - T_0^*)S^2/2 - BS^3/3 + CS^4/4 + \dots, \quad (14)$$

где температурная зависимость коэффициентов *B*, *C*, ... в узком интервале нематической фазы не учитывается. Вклад ΔF_{γ} связан с изменениями $\xi_1 = \Delta \gamma - \Delta \gamma_i$, $\xi_2 = \bar{\gamma} - \bar{\gamma}_i$ параметров $\Delta \gamma$, $\bar{\gamma}$ в ЖК относительно равновесных значений $\Delta \gamma_i$, $\bar{\gamma}_i$ в изотропной фазе. Зависимость (8) выполняется во всем интервале изменения λ от видимой области до $\lambda = \infty$, а величины $\Delta \gamma(\lambda)$, $\bar{\gamma}(\lambda)$ отличаются от экстраполированных значений $\Delta \gamma_{\infty}$, $\bar{\gamma}_{\infty}$ слабо меняющимся коэффициентом пропорциональности. Поэтому будем считать, что в (13) фигурируют $\Delta \gamma_{\infty}$, $\bar{\gamma}_{\infty}$. Функция $\Delta F_{\gamma}(\xi_{1,2})$ с минимумом при $\xi_{1,2} = 0$ дается в низшем приближении положительно определенной квадратичной формой

$$\Delta F_{\gamma} = \xi_1^2 / 2\chi_1 + \xi_1 \xi_2 / \chi_m + \xi_2^2 / 2\chi_2 \tag{15}$$

с коэффициентами $\chi_{1,2} > 0$ и $\chi_m^2 > \chi_1 \chi_2$. В силу некритического характера изменений $\xi_{1,2}$ по отношению к нематическому упорядочению молекул температурной зависимостью $\chi_{1,2,m}$ можно пренебречь. Слагаемое $\Delta F_{S\gamma}$ обусловлено связью тензоров **S** и γ . В низшем порядке по S, $\Delta \gamma$, $\bar{\gamma}$ функция $\Delta F_{S\gamma}(I_1, I_2)$ зависит от инвариантов $I_1 = \text{Sp}(\mathbf{S\gamma}) = \Delta \gamma S^2$, $I_2 = \text{Sp}(\mathbf{S}^2)\text{Sp}(\gamma) = 9\bar{\gamma}S^2/2$ и имеет

2024

вид $\Delta F_{S\gamma} = -(\eta_1 I_1 + 2\eta_2 I_2/9)$. Она состоит из двух частей

$$\Delta F_{S\gamma}(\boldsymbol{\gamma}_i) = -(\eta_1 \Delta \gamma_i + \eta_2 \bar{\gamma}_i) S^2, \qquad (16)$$

$$\Delta F_{S\gamma}(\xi_{1,2}) = -(\eta_1 \xi_1 + \eta_2 \xi_2) S^2.$$
(17)

Подстановка слагаемого $\Delta F_{S\gamma}(\gamma_i)$ в (13) и включение его в ΔF_S (14) дает

$$T^* = T_0^* + (2/a)(\eta_1 \Delta \gamma_i + \eta_2 \bar{\gamma}_i).$$
(18)

Экспериментальное различие температур $T_{\rm NI}$ и T^* составляет порядка градуса [4,5,22], и зависимость (18) справедлива также для $T_{\rm NI}$. При $\eta_1 > 0$ линейный рост $T_{\rm NI}(\Delta \gamma_i)$ согласуется с тем же при повышении $\Delta \gamma_i$ за счет заместителей в мезогенных молекулах [1]. При $\eta_2 > 0$ линейная зависимость $T_{\rm NI}(\bar{\gamma}_i)$ соответствует линейной корреляции между $T_{\rm NI}$ и молекулярной рефракцией $R_M \propto \bar{\gamma}_i$ нематических ЖК при изменении R_M за счет варьирования заместителей в молекулах [23,24]. Зависимость $T_{\rm NI}$ от $\Delta \gamma_i$ и $\bar{\gamma}_I$ объясняет повышение $T_{\rm NI}$ для ряда ЖК при одновременном снижении $\Delta \gamma_i$ и росте $\bar{\gamma}_i$ [1], что является камнем преткновения для теории Майера-Заупе [4], в которой $T_{\rm NI} \propto (\Delta \gamma_i)^2$. Таким образом, для известных ЖК выполняется $\eta_{1,2} > 0$.

Минимизация суммы $\Delta F_{\gamma} + \Delta F_{S\gamma}(\xi_{1,2})$ относительно $\xi_{1,2}$ дает

$$\xi_1 = S^2 \frac{\chi_1(\eta_1 - \eta_2 \chi_2/\chi_m)}{1 - \chi_1 \chi_2/\chi_m^2}, \ \xi_2 = S^2 \frac{\chi_2(\eta_2 - \eta_1 \chi_1/\chi_m)}{1 - \chi_1 \chi_2/\chi_m^2}. \ (19)$$

Эти зависимости $\xi_{1,2}(S)$ отвечают экспериментальным (8). Значения $\chi_m < 0$ ($\xi_{1,2} > 0$) исключают наблюдаемую для NP8OB возможность $\xi_1 < 0, \ \xi_2 > 0$ и не учитываются. При $\chi_m > 0$ каждая из величин $\xi_{1,2}$ определяется двумя вкладами разного знака. Случай $\eta_1 > \eta_{1c} = \eta_2 \chi_2 / \chi_m, \ \xi_1 > 0$ характерен для гомологов *n*CB и MBBA. При $\xi_1 = 0$ за счет взаимной компенсации вкладов в ξ_1 имеем $\xi_2 = \eta_2 \chi_2 S^2$. Соотношения $\eta_1 < \eta_{1c}, \ \xi_1 < 0$ соответствуют нематической фазе NP8OB [20] и ряда других ЖК [5]. Случай $\xi_2 = 0$ при $\eta_2 = \eta_{2c} = \eta_1 \chi_1 / \chi_m$ и $\xi_1 = \eta_1 \chi_1 S^2$ наблюдался для цианфенилового эфира гептилкоричной кислоты [25]. Для остальных изученных к настоящему времени ЖК выполняются соотношения $\eta_2 > \eta_{2c}$, $\xi_2 > 0$ [5,20,26]. В зависимости от величин $R_1 = \eta_1/\eta_{1c}, R_2 = \eta_2/\eta_{2c}$ значение $\xi_1/\xi_2 = \Gamma_2(\Delta \gamma)/\Gamma_2(\bar{\gamma}) = \eta_2(R_1-1)/[\eta_1(R_2-1)]$ может изменяться в широких пределах.

Подстановка $\xi_{1,2}$ (19) в (15), (17) приводит функционал (13) к форме

$$\Delta F_S = a(T - T^*)S^2/2 - BS^3/3 + C^*S^4/4 + \dots$$
 (20)

с параметром T^* (18) и коэффициентом $C^* = C - \Delta C$, где

$$\Delta C = \frac{2\eta_{1c}\eta_{2c}\chi_m}{1-\chi_1\chi_2/\chi_m^2} (R_1 + R_2 - 2).$$
(21)

С учетом $R_1R_2 = \chi_m^2/\chi_1\chi_2 > 1$ из неравенств $(R_1+R_2) > 2(R_1R_2)^{1/2} > 2$ следует $\Delta C > 0$ при

любых $R_{1,2} > 0$. Снижение C^* и возможность смены знака С* на отрицательный показывает необходимость учета следующих членов ряда (20) для адекватного описания экспериментальных зависимостей S(T)теоретической зависимостью $S^*(T)$, минимизирующей функционал (20). Это подтверждается аппроксимацией зависимостей S(T) для *n*CB и MBBA [5], 4-*n*-алкокси-4'-цианобифенилов (nOCB) [27] и других ЖК [28] функциями $S^*(T)$ для ряда (20) со слагаемым $\propto S^6$. Смена знака $\Gamma_2(\Delta \gamma)$ с отрицательного (NP8OB) на положительный и дальнейший рост отношения $\Gamma_2(\Delta \gamma)/\Gamma_2(\bar{\gamma})$ при переходе от МВВА к *n*CB и *n*OCB сопровождается монотонным снижением β_H в формуле (7) от 0.28 [20] до 0.17 [27]. Это отвечает возрастающему влиянию более высоких членов ряда (20) при малых положительных или отрицательных (MBBA) значениях C* [5,28].

5. Заключение

Для наиболее известного нематика MBBA здесь показана возможность экспериментального определения компонент L_j и γ_j тензоров Лорентца и молекулярной поляризуемости в системе осей эллипсоида рефракции без априорных предположений о ненаблюдаемых свойствах молекул или их зависимости от фазового состояния ЖК. Экспериментально установленные квадратичные зависимости $\gamma_{l,t}(S)$, $\Delta\gamma(S)$, $\bar{\gamma}(S)$ в спектральной области от видимого диапазона до $\lambda = \infty$ обусловлены изменением сил осцилляторов длинноволновых электронных переходов молекул МВВА в результате межмолекулярных вза-имодействий и изменения конформации молекулярного остова.

Вывод наблюдаемых зависимостей $\Delta \gamma(S)$, $\bar{\gamma}(S)$ в низшем приближении феноменологической теории показал, что отсутствие линейного по *S* слагаемого является следствием симметрии нематической фазы и отсутствия инварианта SpS = 0 для тензорного параметра порядка S этой фазы. Каждая из функций $\xi_1(S) = \Delta \gamma - \Delta \gamma_i$, $\xi_2(S) = \bar{\gamma} - \bar{\gamma}_i$ определяется двумя слагаемыми противоположного знака. Различные соотношения между этими слагаемыми приводят к особенностям изменения $\Delta \gamma(S)$ и $\bar{\gamma}(S)$, которые соответствуют наблюдаемым для MBBA и других известных ЖК.

Следствием изменения $\Delta \gamma(S)$, $\bar{\gamma}(S)$ является линейная зависимость температуры $T_{\rm NI}$ перехода N–I от параметров $\Delta \gamma_i$ и $\bar{\gamma}_i$, что объясняет известные данные по изменению $T_{\rm NI}$ при варьировании величин $\Delta \gamma_i$, $\bar{\gamma}_i$ в мезогенных молекулах. Это дает возможность управления положением нематической фазы на температурной шкале. Взаимосогласованное изменение параметров $\Delta \gamma$, $\bar{\gamma}$ и S проявляется в перенормировке коэффициентов функционала ΔF_S и изменении зависимости $S^*(T)$, минимизирующей данный функционал. Вследствие этого для аппроксимации экспериментальной зависимости S(T)функцией $S^*(T)$ в функционале ΔF_S необходим учет слагаемых до S^6 .

Список литературы

- Е.М. Аверьянов. Стерические эффекты заместителей и мезоморфизм. Изд-во СО РАН, Новосибирск (2004). 470 с.
- [2] А.Н. Верещагин. Поляризуемость молекул. Наука, М. (1980). 177 с.
- [3] K.D. Bonin, V.V. Kresin. Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters. World Sci. Publ., Singapore (1997). 247 p.
- [4] С. Чандрасекар. Жидкие кристаллы. Мир, М. (1980). 344 с.
- [5] Е.М. Аверьянов. Эффекты локального поля в оптике жидких кристаллов. Наука, Новосибирск (1999). 552 с.
- [6] Е.М. Аверьянов. ЖЭТФ 137, 705 (2010).
- [7] Е.М. Аверьянов. ЖЭТФ 135, 194 (2009).
- [8] M. Brunet-Germain. Comp. Rend. Acad. Sci. B **271**, 1075 (1970).
- [9] A. Pines, J.J. Chang. Phys. Rev. A 10, 946 (1974).
- [10] Y. Sasanuma. J. Phys. II (France). 3, 1759 (1993).
- [11] A. Abe, E. Iizumi, Y. Sasanuma. Polymer J. 25, 1087 (1994).
- [12] R. Dong, L. Freisen, G.V. Richards. Mol. Phys. 81, 1017 (1994).
- [13] I. Haller. Solid State Chem. 10, 103 (1975).
- [14] P.I. Rose. Mol. Cryst.-Liq. Cryst. 26, 75 (1974).
- [15] M. Mizuno, T. Shinoda, H. Mada, S. Kobayashi. Mol. Cryst.-Liq. Cryst. Lett. 41, 155 (1978).
- [16] В.Г. Румянцев, Л.М. Блинов. Опт. и спектр. 47, 324 (1979).
- [17] M. Mizuno, T. Shinoda. Mol. Cryst.-Liq. Cryst. 69, 103 (1981).
- [18] А.Ю. Поповский. Автореф. канд. дис. Изд-во ОГУ, Одесса (1991). 15 с.
- [19] Е.М. Аверьянов. ФТТ 24, 2839 (1982).
- [20] Е.М. Аверьянов, В.А. Жуйков, В.Ф. Шабанов. Кристаллография **29**, 542 (1984).
- [21] H. Suzuki. Electronic Absorption Spectra and Geometry of Organic Molecules. Acad. Press, N.Y.–L. (1967). 567 p.
- [22] П. Де Жен. Физика жидких кристаллов. Мир, М. (1977). 400 с.
- [23] M. Marcos, E. Melendes, B. Ros, J.L. Serrano. Can. J. Chem. 63, 2922 (1985).
- [24] J. Barbera, M. Marcos, M.B. Ros, J.L. Serrano. Mol. Cryst.-Liq. Cryst. 163, 139 (1988).
- [25] Е.М. Аверьянов, В.А. Жуйков, В.Я. Зырянов, В.Ф. Шабанов. ЖСХ 27, 5, 73 (1986).
- [26] Е.М. Аверьянов. ЖФХ 84, 1817 (2010); 86, 810 (2012).
- [27] Е.М. Аверьянов, В.А. Жуйков, В.Я. Зырянов, Ю.И. Руолене, В.Ф. Шабанов. ФТТ 24, 3279 (1982).
- [28] Е.М. Аверьянов. ЖЭТФ 110, 1820 (1996).