01;03 Стационарная конфигурация заряженной поверхности проводящей жидкости в длинноволновом пределе

© К.Е. Бобров, Г.Ш. Болтачев, Н.М. Зубарев, О.В. Зубарева

Институт электрофизики УрО РАН, Екатеринбург E-mail: nick@ami.uran.ru

Поступило в Редакцию 4 апреля 2007 г. В окончательной редакции 13 июня 2007 г.

На основе анализа условий баланса гравитационных и электростатических сил построено частное решение задачи о равновесной конфигурации поверхности проводящей жидкости во внешнем электрическом поле. Решение представляет собой коническую лунку с равным 136.26° углом раствора. Рассмотрена возможность обобщения полученного точного решения на случай диэлектрической жидкости.

PACS: 41.20.Cv, 47.65.-d

Закон дисперсии электрокапиллярных волн на поверхности проводящей жидкости во внешнем электрическом поле имеет следующий вид [1]:

$$\omega^2 = gk + \frac{T}{\rho}k^3 - \frac{E^2}{4\pi\rho}k^2, \qquad (1)$$

где ω — частота, k — волновое число, g — ускорение свободного падения, T — коэффициент поверхностного натяжения, ρ — плотность среды, E — напряженность электрического поля. Первое слагаемое в правой части ответственно за гравитационные силы, второе — за капиллярные, третье — за электростатические. Из дисперсионного соотношения видно, что если выполняется условие $E^2 < E_c^2 = 8\pi\sqrt{gT\rho}$, то при любых k будет $\omega^2 > 0$ и возмущения поверхности не нарастают со временем. Если же напряженность поля E превысит критическое значение E_c , возникает область волновых чисел, для которых $\omega^2 < 0$, что соответствует апериодической неустойчивости. Исходно малые возмущения поверхности будут экспоненциально нарастать, в результате

15

чего система неизбежно придет в состояние, когда определять ее эволюцию будут нелинейные процессы. При $E \gg E_c$ нелинейность заведомо играет дестабилизирующую роль, что обусловливает формирование на поверхности особенностей (острий) за конечное время [2,3]. В этом пределе влияние силы тяжести на эволюцию системы пренебрежимо мало. Представление о конфигурации острий дает известная работа Тейлора [4], в которой было продемонстрировано, что электростатические и капиллярные силы на поверхности конуса взаимно компенсируются только при полуугле раствора $\gamma_T \approx 49.20^\circ$ (динамическое обобщение этого решения предложено в [5]).

В околокритическом поле $E \approx E_c$, когда неустойчивы волны с $k \approx \sqrt{g\rho/T}$ и вклад всех трех слагаемых в правой части дисперсионного соотношения (1) сравним, нелинейность в основном порядке теории возмущений по малому параметру — углу наклона поверхности также играет дестабилизирующую роль [6]. Тем не менее, как известно из экспериментов с жидким гелием (с математической точки зрения эти задачи эквивалентны), в этом случае может сформироваться гексагональный стационарный рельеф поверхности [7]. Это не противоречит анализу работы [6], поскольку формирующийся рельеф характеризуется значительными углами наклона поверхности, что выходит за рамки применимости малоуглового приближения. Построить какое-либо точное решение, учитывающее все силы, не удается; в растоящей работе мы оценим характерные углы наклона, соответствующие стационарным решениям для заряженной поверхности проводящей жидкости без учета капиллярных сил. Это отвечает длинноволновому пределу в законе дисперсии (1).

Итак, будем считать, что равновесная конфигурация свободной поверхности определяется из условия баланса электростатического (P_E) и гидростатического (P_G) давлений: $P_E + P_G = 0$. Направим ось z декартовой системы координат вертикально (от жидкости к газу). На поверхности жидкости имеем: $P_E = (8\pi)^{-1} (\nabla \varphi)^2$ и $P_G = P_0 - \rho g z$, где φ — потенциал электрического поля, а P_0 — некоторая константа. Полагаем, что вектор напряженности электрического поля направлен по оси z, а граница в невозмущенном состоянии представляет собой плоскую горизонтальную поверхность z = 0. В этом случае следует положить: $P_0 = -(8\pi)^{-1}E^2$.

Предположим теперь, что в поверхности жидкости имеется углубление, имеющее форму конической лунки с углом раствора 2 β . Из условия

баланса давлений легко определить глубину лунки *h*. В вершине конуса электростатическое давление равно нулю и, следовательно, нулю равняется и гидростатическое давление. Отсюда находим: $h = (8\pi\rho g)^{-1}E^2$, что дает верхнюю оценку для амплитуды волн на поверхности проводящей жидкости в длинноволновом пределе.

Удобно перейти к сферической системе координат, начало которой совпадает с особой точкой конической лунки: $r = \sqrt{x^2 + y^2 + (z + h)^2}$ и $\theta = \arccos(z/r + h/r)$. Условие баланса давлений на свободной поверхности тогда перепишется в виде

$$(8\pi r^2)^{-1} \varphi_{\theta}^2 \Big|_{\theta=\beta} = \rho g r \cos\beta.$$
⁽²⁾

Распределение потенциала электрического поля определяется уравнением Лапласа

$$\varphi_{rr} + \frac{2}{r}\varphi_r + \frac{1}{r^2}\varphi_{\theta\theta} + \frac{\cot\theta}{r^2}\varphi_{\theta} = 0, \quad 0 \le \theta < \beta, \tag{3}$$

которое следует решать совместно с условием эквипотенциальности границы проводника и условием симметрии потенциала поля относительно оси конуса:

$$\varphi = 0, \quad \theta = \beta, \tag{4}$$

$$\varphi_{\theta} = 0, \quad \theta = 0. \tag{5}$$

Из условия (2) видно, что гидростатическое давление P_G может уравновешиваться электростатическим давлением P_E только если $\varphi \sim r^{3/2}$. Это дает нам основание искать решение в виде: $\varphi(r, \theta) = r^{3/2}F(\theta)$. Подстановкой в уравнение Лапласа (3) получаем:

$$F_{\theta\theta} + \cot\theta F_{\theta} + 15F/4 = 0$$

Решением этого уравнения, с учетом условия (5), будет: $F \sim P_{3/2}(\cos \theta)$, где $P_{3/2}$ — функция Лежандра порядка 3/2. Условие (4) дает $P_{3/2}(\cos \beta) = 0$, что определяет полуугол раствора конической лунки: $\beta = \beta_0 \approx 68.13^\circ$. Отсюда следует искомая оценка для характерных углов наклона поверхности: $\alpha \approx 21.87^\circ$, что вполне соответствует наблюдаемой в [7] картине.

Таким образом, мы нашли точное осесимметричное решение задачи о равновесной конфигурации заряженной поверхности проводящей жидкости, представляющее собой коническую лунку с углом раствора

18

 $2\beta_0 \approx 136.26^\circ$. Рассмотрение той же задачи в случае плоской симметрии дает решение с углом 120° , что совпадает с углом Стокса для плоских гравитационных волн. Аналогия связана с идентичностью описания двумерного потенциального течения жидкости и распределения электрического поля в 2*D* геометрии. Отметим также, что с математической точки зрения наш подход близок к использованному в работе [8] при анализе формы обтекаемого жидкостью пузыря.

Рассмотрим теперь возможность обобщения найденного нами точного решения на случай идеальной диэлектрической жидкости с проницаемостью ε . В работах [9,10] на основе анализа условий баланса капиллярных и электростатических сил на поверхности жидкого диэлектрического конуса было дано обобщение конического решения Тейлора [4] на случай жидкого диэлектрика. Так, была продемонстрирована возможность существования стационарных решений при выполнении условия $\varepsilon \ge \varepsilon_0 \approx 17.6$. Связь полуугла раствора конуса γ и проницаемости ε определяется соотношением:

$$\frac{P_{1/2}'(-\cos\gamma)P_{1/2}(\cos\gamma)}{P_{1/2}'(\cos\gamma)P_{1/2}(-\cos\gamma)} = -\varepsilon,$$
(6)

где $P_{1/2}$ — функция Лежандра порядка 1/2, а $P'_{1/2}$ — ее производная по аргументу. Из (6) следует, что полуугол раствора конуса должен находиться в пределах $0^{\circ} < \gamma < \gamma_T$. Решение Тейлора соответствует условию $P_{1/2}(-\cos \gamma) = 0$, когда знаменатель дроби в (6) обращается в нуль, а ε стремится к бесконечности.

Аналогичным образом можно найти зависимость полуугла раствора конической лунки от диэлектрической проницаемости жидкости при анализе баланса гравитационных и электростатических сил. Решая уравнения Лапласа для потенциала поля в жидкости и над ней в сочетании с условиями непрерывности потенциала и нормальной компоненты вектора электрической индукции на границе диэлектрика, находим искомое соотношение:

$$\frac{P_{3/2}'(\cos\beta)P_{3/2}(-\cos\beta)}{P_{3/2}'(-\cos\beta)P_{3/2}(\cos\beta)} = -\varepsilon.$$

Эта зависимость, сходная по структуре с зависимостью (6), проиллюстрирована на рисунке. Из него видно, что стационарные луночные решения существуют лишь при выполнении условия $\varepsilon \ge \varepsilon_c \approx 416$, при

Зависимость между полууглом раствора конической лунки β и диэлектрической проницаемостью жидкости ε .

этом полуугол раствора лежит в диапазоне 65.21° $\approx \beta_1 < \beta < \beta_0$. Максимальный угол раствора конической лунки $2\beta_0$ соответствует пределу, когда поле не проникает в жидкость (при этом $\varepsilon \to \infty$). Этот предел, с математической точки зрения, аналогичен рассмотрению проводящей жидкости во внешнем электрическом поле. Получившееся значение ε_c значительно превышает значение проницаемостей реальных диэлектриков (к примеру, для этилового спирта $\varepsilon \approx 26$, для нитробензола $\varepsilon \approx 36$, для воды $\varepsilon \approx 81$), так что реализация найденных нами решений для диэлектриков, в отличие от жидких проводников, не представляется возможной.

Данная работа выполнена при поддержке РФФИ (проект 07-02-96035), президента РФ (проект МД-2553.2007.2) и Фонда содействия отечественной науке в рамках целевой программы поддержки междисциплинарных проектов УрО РАН и СО РАН и Программы президиума РАН "Фундаментальные проблемы нелинейной динамики".

Список литературы

20

- [1] Френкель Я.И. // ЖЭТФ. 1936. Т. 6. С. 347.
- [2] Baskin L.M., Batrakov A.V., Popov S.A., Proskurovsky D.I. // IEEE Trans. Dielec. Electr. Insul. 1995. V. 2. P. 231.
- [3] Oddershede L., Nagel S.R. // Phys. Rev. Lett. 2000. V. 85. P. 1234.
- [4] Taylor G.I. // Proc. R. Soc. London A. 1964. V. 280. P. 383.
- [5] Зубарев Н.М. // Письма в ЖЭТФ. 2001. Т. 73. С. 613.
- [6] Зубарев Н.М., Зубарева О.В. // ЖТФ. 2001. Т. 71. В. 8. С. 8.
- [7] Leiderer P., Wanner M. // Phys. Lett. A. 1979. V. 73. P. 189.
- [8] Иногамов Н.А., Опарин А.М. // ЖЭТФ. 2003. Т. 124. В. 6 (12). С. 1308.
- [9] Ramos A., Castellanos A. // Phys. Lett. A. 1994. V. 184. P. 268.
- [10] Li H., Halsey T.C., Lobkovsky A. // Europhysics Letters. 1994. V. 27. P. 575.