07 Множественность центров европия в стехиометрических кристаллах ниобата лития

© А.А. Каплянский, З. Каппхан, А.Б. Куценко, К. Полгар, А.П. Скворцов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Отдел физики, Университет г. Оснабрюк, Германия Институт физики твердого тела и оптики ВАН, Будапешт, Венгрия E-mail:a.skvortsov@mail.ioffe.ru

Поступило в Редакцию 13 ноября 2006 г.

При 4.2 К методом комбинированного измерения спектров возбуждения и люминесценции исследованы спектры стехиометрических кристаллов LiNbO₃ : Eu³⁺ в области оптических переходов ⁵D₀ \rightarrow ⁷F₁, ⁷F₀. Анализ полученных результатов показал, что ионы Eu³⁺ занимают в решетке LiNbO₃ 14 различных энергетически неэквивалентных позиций. Множественность центров обусловлена разнообразием возможностей вхождения примесных ионов в решетку ниобата лития и различными способами компенсации избыточного заряда. Определены положения уровня ⁵D₀ и нижайшего подуровня штарковского ⁷F₁ мультиплета для 14 различных Eu³⁺-центров.

PACS: 78.60.-b, 77.84.Bw

Ниобат лития (LiNbO₃) сочетает в себе уникальные электрооптические, акустооптические и нелинейные оптические свойства кристаллической основы с возможностью легирования кристаллов редкоземельными ионами и ионами переходных металлов. Введение этих примесей существенно влияет на физические свойства LiNbO₃ (показатель преломления, доменная структура, электрооптические коэффициенты, поглощение света и др.). Кристаллы ниобата лития, как чистые, так и содержащие ионы редких земель и переходных металлов, являются важным материалом квантовой электроники (дефлекторы, преобразователи частоты, усилители, лазеры, среды для записи информации и т.д.). В связи с этим принципиальной задачей является выяснение природы примесных центров в LiNbO₃. В настоящей работе впервые

46

исследованы спектры люминесценции $LiNbO_3 : Eu^{3+}$. Ионы Eu^{3+} с их простой схемой термов широко используются в качестве зондов при изучении кристаллохимической структуры активаторных центров.

Нестехиометрические (конгруэнтные) кристаллы LiNbO₃ с примесью Eu³⁺ были выращены методом Чохральского (концентрация Eu³⁺ в шихте около 0.2% wt.) с помощью аппаратуры, описанной в [1]. Активатор вводился в расплав в виде окисла. Скорость вытягивания из расплава 1 mm/h. Скорость вращения затравки 10 геv./min, ось роста — тригональная ось (0001). Монодоменизация проводилась в печи путем пропускания тока 5 mA через выращенные образцы в процессе их охлаждения до комнатной температуры. Монодоменность контролировалась исследованием поверхности образцов под микроскопом после травления в смеси плавиковой и азотной кислот. Далее монодоменные образцы были стехиометризованы методом VTE (vapour transport equilibration) [2], состоящим в выдерживании исходных образцов в обогащенной Li среде при температуре 1100°C в течение нескольких сотен часов.

При 4.2 К проведено комбинированное исследование линейчатых спетров возбуждения и люминесценции Eu³⁺ в области оптических переходов ${}^5D_0 \rightarrow {}^7F_1$, 7F_0 . Использован так называемый метод CEES (combined excitation-emission spectroscopy) [3], который состоит в измерении линейчатых спектров люминесценции ионов при различных частотах возбуждающего монохроматического света в области переходов между подуровнями основного и возбужденного состояний с представлением результатов в двумерной плоскости частот возбуждения v_{exc} — излучения v_{em} . На рисунке приведен CEES-спектр для переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ с возбужденного ${}^{5}D_{0}$ уровня на нижайший подуровень мультиплета, возникающего вследствие расщепления ⁷F₁ в некубическом кристаллическом поле. При температуре 4.2 К возбуждение ионов Eu³⁺ происходит с нижайшего синглетного уровня ⁷F₀ (см. схему уровней на рисунке). На опытной двумерной картине рисунка пронумерованы особые точки, которые отвечают различным парам резонансных частот $v_{exc} - v_{em}$ переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ в ионах Eu³⁺, занимающих, как видно, 14 энергетически (спектроскопически) неэквивалентых позиций в решетке LiNbO₃.

Ионы редких земель, в принципе, могут замещать в кристаллах $LiNbO_3$ регулярные ионы решетки Li^+ , Nb^{5+} или внедряться в вакантные октаэдрические пустоты решетки. Локальная симметрия всех этих

Детальный CEES спектр стехиометрических кристаллов LiNbO3 : Eu³⁺ в области ${}^5D_0 \rightarrow {}^7F_1$ перехода при T = 4.2 K.

позиций соответствует тригональной точечной группе C₃. При гетеровалентном замещении редкоземельными ионами RE³⁺ перечисленных позиций для сохранения общей электронейтральности кристалла с необходимостью требуется компенсация избыточного положительного или отрицательного заряда. Эта компенсация осуществляется посредством появления в решетке LiNbO₃ : Eu³⁺ тех или иных заряженных дефектов. Действие кулоновского поля этих дефектов на уровни Eu³⁺ приводит к дополнительному штарковскому сдвигу, и разнообразие во взаимном расположении комплексов "ион Eu³⁺—дефект" в решетке обусловливает появление различных спектроскопически неэквивалентных Eu³⁺-центров. При этом локальная симметрия поля, действующего на ионы Eu³⁺ в различных центрах, может как соответствовать тригональной группе C₃ ("основные" центры), так и быть понижена до триклинной C₁.

Уровни 5D_0 и 7F_0 являются невырожденными, в то время как уровень 7F_1 расщепляется в кристаллическом поле симметрии C_3 на

0

0

0

0

0

8

9

10

11

12

13

14

17169.7

17170.3

17171.1

17174.5

17178.1

17178.5

17185.4

мультиплета			
Номер	Уровень		
позиции	${}^{7}F_{0}$	⁷ F ₁	⁵ D ₀
1	0	$235.6 \mathrm{cm}^{-1}$	$17153.9{\rm cm}^{-1}$
2	0	232.3	17156.3
3	0	227.4	17157.2
4	0	223.1	17160.7
5	0	222.7	17162.9
6	0	221.4	17163.3
7	0	219.6	17165.7

217.7

213.4

212.6

208.9

206.7

205.1

199.1

Энергетические положения уровней $^7F_0,\ ^5D_0$ и нижайшего подуровня 7F_1 мультиплета

два подуровня, а в поле C_1 на три. Нижайшие подуровни 7F_1 -состояния для выявленных 14 центров отделены от вышележащих подуровней энергетическим зазором 200 сm⁻¹ и более. Поэтому удалось однозначно определить энергетические положения 5D_0 -уровня и нижайшего подуровня 7F_1 -мультиплета иона Eu^{3+} для 14 различных европиевых центров в LiNbO₃ (см. таблицу).

Как известно, редкоземельные ионы (\mathbb{RE}^{3+}) имеют частично заполненную 4*f*-оболочку, экранированную полностью заполненными 5 s^25p^6 -оболочками. Экранирующее действие наружных оболочек приводит к слабому взаимодействию внутриконфигурационных переходов с окружающей кристаллической решеткой. Вследствие этого спектр конкретного \mathbb{RE}^{3+} -иона сравнительно слабо менятся при помещении его в различные кристаллические основы. Положения ⁵D₀-уровней выявленных \mathbb{Eu}^{3+} -центров в области 17153 ÷ 17186 сm⁻¹ близки к энергии ⁵D₀ уровня в кристаллах $YVO_4 : \mathbb{Eu}^{3+}$ (17183 сm⁻¹) [4], YAG: \mathbb{Eu}^{3+} (17211 сm⁻¹) [5] и $Y_2O_3 : \mathbb{Eu}^{3+}$ (17221 сm⁻¹) [6], но существенно меньше, чем в кристаллах фторапатита $Ca_5(PO_4)_3F$

 (17473 cm^{-1}) [7] и флюорита CaF₂ (17437 cm^{-1}) [8]. Заметим, что многоцентровость в примесных кристаллах — достаточно общее явление при гетерозарядной активации (см., например, [9–11]). Это связано как с замещением примесными ионами отличных друг от друга регулярных позиций в кристаллической решетке, так и с разнообразием способов компенсации избыточного заряда.

Работа частично поддержана грантами CRDF RPO-1385-ST-03 и РФФИ 06-02-17274.

Список литературы

- [1] Schmidt F., Voszka R. // Crystal Research and Technology. 1981. V. 16. P. k127.
- [2] Luh Y.S., Fejer M.M., Byer R.L. et al. // J. Cryst. Growth. 1987. V. 85. P. 264.
- [3] Gill D.M., Wright J.C., McCaughan L. // Phys. Rev. Lett. 1994. V. 64. P. 2483.
- [4] Brecher C., Samelson H., Lempick A. et al. // Phys. Rev. 1967. V. 155. P. 178.
- [5] Konigstein J.A. // Phys. Rev. 1964. V. 136. P. A717.
- [6] Chang N.C. // J. Appl. Phys. 1963. V. 34. P. 3500.
- [7] Морозов А.М., Морозова Л.Г., Трофимов А.К. и др. // Опт. и спектр. 1970. Т. 29. С. 1106.
- [8] Феофилов П.П. // ДАН СССР. 1954. Т. 99. С. 975.
- [9] Полгар К., Скворцов А.П. // Опт. и спектр. 1985. Т. 58. С. 229.
- [10] Dierolf V., Koerdt M. // Phys. Rev. 2000. V. 61. P. 8043.
- [11] Kim S., Phee S.J., Li X. et al. // J. of Electronic Materials. 1999. V. 28. P. 226.