## 05 Диффузное рассеяние рентгеновских лучей от кристалла, промодулированного поверхностной акустической волной

## © В.И. Пунегов, Д.В. Казаков, Д.В. Иржак, Д.В. Пунегов, Д.В. Рощупкин, Я.И. Нестерец

Коми научный центр УрО РАН, Сыктывкар, Россия Сыктывкарский государственный университет, Россия Институт проблем технологии микроэлектроники и особочистых материалов РАН, Черноголовка, Россия CSIRO Manufacturing and Infrastructure Technology, Victoria 3169, Australia E-mail: punegov@syktsu.ru

## Поступило в Редакцию 4 сентября 2006 г.

Рассмотрено формирование диффузного рассеяния рентгеновского излучения в кристалле, промодулированном поверхностной акустической волной (ПАВ). Показано, что угловое распределение диффузного рассеяния зависит от величины градиента изменения амплитуды ультразвуковой волны в глубь кристалла и формируется не только вблизи основного дифракционного пика, но и вокруг дифракционных сателлитов. Теоретические карты распределения интенсивности рассеяния в обратном пространстве сравниваются с экспериментальными результатами.

PACS: 61.10.-I, 61.10.Dp, 77.65.Dq

В реальных кристаллах разные типы несовершенства нарушают идеальную периодичность решетки. Если эти нарушения носят случайный характер, например, при наличии в объеме кристалла хаотически распределенных дефектов, то процесс дифракции рентгеновских лучей неизменно сопровождается выходом диффузного рассеяния [1]. С другой стороны, нарушения идеальной периодичности кристаллической решетки могут иметь неслучайный характер, например, при распространении поверхностной акустической волны (ПАВ), которая оказывает существенное влияние на рассеяние рентгеновских лучей, в первую очередь на ее когерентную компоненту в виде возникновения дифракционных сателлитов вокруг основного дифракционного максимума [2]. Поскольку

33

приборы на основе ПАВ широко применяются в различных областях человеческой деятельности, например, современных телекоммуникационных системах [3], то исследование кристаллов с ультразвуковой модуляцией неразрущающими рентгенодифракционными методами представляет весьма актуальную задачу.

В настоящее время дифракция рентгеновских лучей на кристаллах с ПАВ интенсивно исследуется теоретически и экспериментально [4–6]. Однако эти исследования проводятся в рамках так называемого когерентного приближения. До сих пор влияние ПАВ на процесс диффузного рассеяния рентгеновских лучей не изучено. Поэтому цель данной работы состоит в развитии теории диффузного рассеяния на акустически промодулированном кристалле применительно к методу трехкристальной дифрактометрии [7,8] с последующим сопоставлением теоретических расчетов с экспериментальными измерениями.

Так как поверхностная акустическая волна проникает в глубь кристалла на относительно небольшую глубину порядка нескольких микрон, то диффузное рассеяние можно рассматривать в кинематическом приближении без учета вторичной экстинкции. Пусть  $\mathbf{k}_{0,h}$  — волновые векторы падающего и отраженного рентгеновского пучка. Дифракционное рассеяние происходит от атомных плоскостей, перпендикулярных вектору обратной решетки **h**. Будем исходить из общего выражения для интенсивности диффузного рассеяния [9], угловое распределение которого выражается через проекции вектора  $\mathbf{q} = \mathbf{k}_h - \mathbf{k}_0 - \mathbf{h}$ , задающего отклонение вектора рассеяния от узла обратной решетки:

$$q_{x} = \kappa \big( (\sin \theta_{1} + \sin \theta_{2})\omega - \sin \theta_{2}\varepsilon \big),$$
$$q_{z} = -\kappa \big( (\cos \theta_{1} - \cos \theta_{2})\omega + \cos \theta_{2}\varepsilon \big),$$

где  $\theta_{1,2} = \theta_B \mp \varphi$  — углы, определяющие направления падающей и дифракционной волны относительно входной поверхности кристалла;  $\varphi$  — угол скоса отражающих плоскостей к поверхности образца;  $\kappa = 2\pi/\lambda$  — волновое число в вакууме;  $\lambda$  — длина волны рентгеновского излучения в вакууме;  $\omega$ ,  $\varepsilon$  — угловые отклонения образца и анализатора в схеме трехосевой дифрактометрии. Для слоя толщиной l и шириной засветки рентгеновским пучком поверхности кристалла L интенсивность диффузного рассеяния может быть представлена

в виде

$$I_{h}^{d}(q_{x},q_{z}) = |a_{h}|^{2} \int_{0}^{l} dz \int_{-L/2}^{L/2} dx \left(1 - f^{2}(x,z)\right) \\ \times \exp\left(-[1+b]\mu z\right) \tau(x,z,q_{x};q_{z}) I_{0}(x - \cot\vartheta_{1}z,0,z), \quad (1)$$

где  $a_h = C\pi\chi_h/(\lambda\gamma_h)$ ,  $\gamma_h = \sin(\theta_2)$ ,  $b = \gamma_0/\gamma_h$  — фактор асимметрии, С — поляризационный фактор,  $\chi_h = -r_0 \frac{\lambda^2}{\pi V_c} F_h$  — Фурье-компоненты рентгеновской поляризуемости,  $V_c$  — объем элементарной ячейки,  $r_0 = e^2/mc^2$  — классический радиус электрона, e, m — заряд и масса электрона,  $F_h$  — структурный фактор,  $\mu$  — коэффициент поглощения рентгеновских лучей. Согласно (1), величина интенсивности диффузного рассеяния определяется статическим фактором Дебая-Валлера f(x, z) и интенсивностью проходящей рентгеновской волны  $I_0(x - \cot \vartheta_1 z, 0, z)$ , а угловое распределение зависит от корреляционной площади

$$\tau(x, z, q_x, q_z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\rho_x \int_{-\infty}^{+\infty} d\rho_z \exp\left(i\left[q_x\rho_x + q_z\rho_z\right] + \mathbf{h}\left(\left\langle\mathbf{u}(x+\rho_x, z+\rho_z)\right\rangle - \left\langle\mathbf{u}(x, z)\right\rangle\right)\right]\right) G(x, z; \rho_x, 0, \rho_z)$$

Здесь вектор атомных смещений представлен в виде суммы усредненной и флуктуационной части  $\mathbf{u}(\mathbf{r}) = \langle \mathbf{u}(\mathbf{r}) \rangle + \delta \mathbf{u}(\mathbf{r})$ . Тип кристаллических дефектов задается корреляционной функцией

$$G(x, z, \rho_x, \mathbf{0}, \rho_z) = \frac{\left\langle \exp\left(i\mathbf{h}\left[\delta\mathbf{u}(x+\rho_x, z+\rho_z) - \delta\mathbf{u}(x, z)\right]\right)\right\rangle - f^2(x, z)}{1 - f^2(x, z)}$$

Для некоторых моделей дефектов выражения для корреляционных функций применительно к трехосевой рентгеновской дифрактометрии были получены в [9].

Пусть в приповерхностном слое кристалла распространяется ПАВ, при этом усредненное поле атомных смещений становится периодической функцией по горизонтальной оси x, направленной вдоль поверхности кристалла. Поэтому  $\langle \mathbf{u}(x + \Lambda, z) \rangle = \langle \mathbf{u}(x, z) \rangle$ , где  $\Lambda$  длина ультразвуковой волны.

Рассмотрим модель периодической латеральной модуляции, задаваемой гармонической функцией вида  $\langle \mathbf{u}(x,z) \rangle = \mathbf{u}_0(z) \sin(\kappa_s x)$ , где  $\kappa_s = 2\pi/\Lambda$  — волновое число акустических колебаний. Обычно уменьшение амплитуды ПАВ в глубь кристалла выбирают в виде экспоненциального выражения  $u_0(z) = u_0 \exp(-\mu_{ac} z)$  с коэффициентом затухания ультразвуковой волны  $\mu_{ac}$  [4]. Далее предположим, что дефекты в кристалле имеют однородное случайное распределение. При этих условиях площадь корреляции запишется как

$$\tau(z, q_x, q_z) = \sum_{m=-\infty}^{\infty} \left| J_m(hu_0(z)) \right|^2 \tau_m(q_x, q_z),$$
(2)

где

$$J_m(hu_0(z)) = (2\pi)^{-1} \int_0^{2\pi} \exp\left[i(hu_0(z)\sin(\varphi/\kappa) + m\varphi)\right] d\varphi$$

— функция Бесселя *m*-го порядка. Решение для интенсивности диффузного рассеяния от кристалла с ПАВ можно представить в виде суммы

$$I_{h}^{d}(q_{x}, q_{z}) = \sum_{m=-\infty}^{\infty} I_{h,m}^{d}(q_{x}, q_{z}).$$
 (3)

Под знаком суммы стоят выражения для интенсивностей диффузного рассеяния в угловых областях соответствующих дифракционных порядков  $m = 0, \pm 1, \pm 2, ...$  (основного максимума (m = 0) и сателлитных пиков  $(m \neq 0)$ )

$$I_{h,m}^{d}(q_{x},q_{z}) = |a_{h}|^{2}(1-f^{2})\tau_{m}(q_{x},q_{z})\int_{0}^{t}dz \left|J_{m}(hu_{0}(z))\right|^{2} \\ \times \int_{-L/2}^{L/2}dx \exp(-[1+b]\mu z)I_{0}^{c}(x-\cot\vartheta_{1}z,0,z).$$
(4)

Согласно (3) и (4), распределение диффузного рассеяния от кристалла с ПАВ в обратном пространстве задается поведением собственных корреляционных площадей

$$\tau_m(q_x, q_z) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\rho_x \int_{-\infty}^{+\infty} d\rho_z \exp\left(i\left[(q_x - m\kappa_s)\rho_x + q_z\rho_z\right]\right) G(\rho_x, 0, \rho_z).$$
(5)

Эти параметры, а следовательно и интенсивности диффузного рассеяния  $I_{h,m}^d(q_x, q_z)$ , принимают максимальные значения при  $q_x = m\kappa_s$ . Кроме этого, интенсивность диффузного рассеяния того или иного дифракционного порядка зависит от "весовых" коэффициентов  $|J_m(hu_0(z))|^2$ , т. е. от величины амплитуды ПАВ на поверхности кристалла и градиента ее затухания в глубь образца.

Итак, мы установили, что диффузное рассения в условиях дифракции рентгеновских лучей на кристалле с ПАВ характеризуется сателлитной структурой, которая по угловым положениям совпадает с распределением интенсивности когерентного рассеяния [6].

В случае если ПАВ в кристалле проникает на относительно небольшую глубину и к тому же кристалл слабо поглощает рентгеновское излучение, то интенсивность проходящей рентгеновской волны можно считать постоянной величиной. В итоге выражение (4) примет более простой вид

$$I_{h,m}^{d}(q_{x},q_{z}) = |a_{h}|^{2}(1-f^{2})L\tau_{m}(q_{x},q_{z})C_{m}(l,u_{0},\mu_{ac}),$$
(6)

где коэффициенты  $C_m(l, u_0, \mu_{ac}) = \int_0^l dz \left| J_m(hu_0(z)) \right|^2$  зависят от глубины проникновения l и амплитуды ПАВ на входной поверхности  $u_0$ , а также

от коэффициента затухания ультразвуковой волны  $\mu_{ac}$ . Если амплитуда ультразвуковой волны не изменяется с глубиной

проникновения в кристалл, т.е.  $u_0(z) = u_0$ , вместо (6) можно записать

$$I_{h,m}^{d}(q_{x},q_{z}) = |a_{h}|^{2}(1-f^{2})\tau_{m}(q_{x},q_{z})|J_{m}(hu_{0})|^{2}Ll.$$

Здесь под *l* следует понимать толщину кристаллического слоя, в котором возбуждена однородная по амплитуде ультразвуковая волна.

На основе данной теории приведем результаты численных расчетов. Все расчеты выполнены для [104] отражения от 127°-ного Y'-среза кристалла LiNbO<sub>3</sub>  $\sigma$ -поляризованного рентгеновского излучения с длиной волны  $\lambda = 0.954$  Å, что соответствует энергии рентгеновских квантов 13 keV. Длина ультразвуковой волны выбрана  $\Lambda = 4 \,\mu$ m, что совпадало с условиями эксперимента. В расчетах использован экспоненциальный закон затухания амплитуды модуляции ПАВ по глубине кристалла [4]. В рассмотрение введен параметр, характеризующий глубину проникновения акустической волны  $l_{ac} = 1/\mu_{ac}$ . Поскольку,



**Рис. 1.** Расчетные  $q_x$  сканы (a, b) и карты (c, d) распределения интенсивности диффузного рассеяния от мозаичного кристалла под воздействием ультразвуковой волны. Амплитуды модуляции ПАВ  $u_0: a, c - 0.1$  nm; b, d - 0.4 nm. Контуры равной интенсивности представлены в логарифмическом масштабе, отношение интенсивностей между соседними линиями составляет 0.5.

согласно [4],  $l_{ac} \approx 1.3\Lambda$ , в расчетах мы использовали  $l_{ac} = 5.2\,\mu\text{m}$  ( $\mu_{ac} = 0.2\,\mu\text{m}^{-1}$ ). Для описания нарушений кристаллической решетки принята модель мозаичного кристалла [9].

На рис. 1 показаны результаты  $q_x$ -сканирования при  $q_z = 0$  (a, b) и карты (c, d) распределения интенсивности диффузного рассеяния от мозаичного кристалла при малых (a, c) и больших (b, d) значениях амплитуды модуляции ПАВ. Размеры блоков мозаичной структуры составляли в латеральном направлении 5 $\mu$ m, в вертикальном направ-



**Рис. 2.** Вычисленные карты углового распределения интенсивностей для когерентного (a), диффузного (b) и полного (c) рассеяния,  $u_0 = 0.29$  nm, d — экспериментально измеренная карта на источнике синхротронного излучения. Контуры равной интенсивности представлены в логарифмическом масштабе, отношение интенсивностей между соседними линиями составляет 0.4.

лении 1  $\mu$ m. Из рисунка видно, что в случае слабой модуляции интенсивность диффузного рассеяния концентрируется вокруг основного дифракционного максимума. При большой амплитуде альтразвуковой волны диффузный фон в угловых положениях сателлитных максимумов может превышать некогерентное рассеяние в области основного пика (рис. 1, *b*, *d*).

Карты углового распределения интенсивностей для когерентного (*a*), диффузного (*b*) и полного (*c*) рассеяния приведены на рис. 2. В расчетах использована модель мозаичного кристалла с размерами блоков 10 и 1 $\mu$ m в латеральном и вертикальном направлениях соответственно. Вычисление когерентной компоненты интенсивности рассеяния выполнено на основе теории, представленной в [6]. Для сравнения на рис. 2, *d* представлена экспериментальная карта интенсивности рассеяния от кристалла LiNbO<sub>3</sub>, измеренная на источнике синхротронного излучения ESRF.

Работа выполнена при финансовой поддержке целевой программы "Развитие научного потенциала высшей школы" (проект РНП.2.1.1.3425) и Российского фонда фундаментальных исследований (контракты № 04-02-16456, 07-02-00090).

## Список литературы

- Кривоглаз М.А. Дифракция рентгеновских лучей и нейтронов в неидеальных кристаллах. Киев: Наук. думка, 1983. 408 с. (*Krivoglaz M.A.* X-ray and Neutron Diffraction in Nonideal Crystals. Berlin: Springer, 1996.)
- [2] Roshchupkin D.V., Tucoulou R., Masclet A., Brunel M., Schelokov I.A., Kondakov A.S. // Nucl. Instrum. Meth. Phys. Research. B. 1998. V. 142. P. 432–436.
- [3] *Campbell C.K.* Surface Acoustic Wave Devices for Mobile and Wireless Communications. Boston: Academic Press, 1998. 631 p.
- [4] Tucoulou R., de Bergevin F., Mathon O., Roshchupkin D. // Phys. Rev. B. 2001.
   V. 64. P. 134108-1–134108-9.
- [5] Schelokov I.A., Roshchupkin D.V., Irzhak D.V., Tucoulou R. // J. Appl. Cryst. 2004. V. 37. P. 52–61.
- [6] Пунегов В.И. // Письма в ЖТФ. 2003. Т. 29. В. 19. С. 52–59.
- [7] Iida A., Kohra K. // Phys. Stat. Sol. (a). 1979. V. 51. P. 533-542.
- [8] Lomov A.A., Zaumseil P., Winter U. // Acta Cryst. A. 1985. V. A41. P. 223-227.
- [9] Nesterets Ya.I., Punegov V.I. // Acta Cryst. A. 2000. V. A56. P. 540-548.