01;05 О зависимости температуры фазового перехода кристалл—жидкость от размера и формы нанокристалла

© М.Н. Магомедов

Институт проблем геотермии Дагестанский научный центр РАН, Махачкала E-mail: mahmag@iwt.ru

Поступило в Редакцию 5 сентября 2006 г.

Исходя из критерия Линдеманна, изучена зависимость температуры фазового перехода кристалл—жидкость T_m от размера и формы нанокристалла со свободной поверхностью. Показано, что если пренебречь поверхностным давлением, то величина T_m уменьшается при изоморфном уменьшении размера нанокристалла. Чем больше форма нанокристалла отклоняется от кубической, тем заметнее будет зависимость T_m от размера. Но если при уменьшении размера поверхностное давление сжимает нанокристалл, то это приводит к увеличению величины T_m . В случае растяжения нанокристалла поверхностным давлением уменьшение значения T_m при изоморфном уменьшении размера возрастает. Показано, что поверхностное давление может как ослаблять, так и усиливать размерные осцилляции T_m как функции размера.

PACS: 64.70.Dv, 65.80.+n

Исходя из критерия Линдеманна [1,2] для зависимости температуры фазового перехода кристалл—жидкость от числа атомов (N) и формы нанокристалла было получено [3]:

$$T_m^*(N, f) = T_m(N, f) / T_m(\infty) \cong \left[\Theta^*(N, f)c^*(N, f)\right]^2$$
$$\cong k_3^*(N, f) \left[c^*(N, f)\right]^{-2(3\gamma - 1)}, \tag{1}$$

где k_b — постоянная Больцмана, $\Theta(N, f)$ — температура Дебая нанокристалла, c(N, f) — среднее (по всему объему нанокристалла) расстояние между центрами ближайших атомов в нанокристалле, $k_3(N, f)$ — среднее (по всем атомам нанокристалла) первое координационное число, γ — параметр Грюнайзена, который почти не зависит от

62

размера нанокристалла [4,5]. Функция со звездочкой представляет собой нормированную (к своему макроскопическому значению) величину $F^*(N, f) = F(N, f)/F(N = \infty)$. Здесь, как и в [3–5], предполагается, что нанокристалл со свободной поверхностью имеет вид прямоугольного параллелепипеда с квадратным основанием. Величина $f = N_{ps}/N_{po}$ — параметр формы, который определяется отношением числа атомов на боковом ребре (N_{ps}) к числу атомов на ребре основания (N_{po}) .

В работах [3–5] для зависимости нормированного значения среднего координационного числа $k_3^*(N, f) = k_3(N, f)/k_3(N = \infty)$ от размера (числа атомов в нанокристалле N или его диаметра d) и формы параллелепипеда было получено

$$k_{3}^{*}(N, f) = 1 - Z_{s}(f) \left[\alpha^{2} / N \right]^{1/3},$$

$$k_{3}^{*}(d, f) = 1 - 3^{1/2} L_{d}(f) \alpha \left[c(N, f) / d \right],$$
 (2)

где $\alpha = \pi/6k_y$, k_y — коэффициент упаковки структуры, функции формы имеют вид

$$Z_s(f) = (1+2f)/3f^{2/3}, \quad L_d(f) = \left[(2f+1)/3f\right]\left[(2+f^2)/3\right]^{1/2}.$$
 (3)

Как показано в [3–5], функции формы из (3) достигают минимума (равного единице для обеих функций) при f = 1, т.е. для куба. Для пластинчатых (f < 1) или стержневидных (f > 1) нанокристаллов значения этих функций формы больше единицы. Поэтому функция $k_3^*(f)$ при любом значении N (либо d) имеет максимум при f = 1, т.е. для наиболее термодинамически устойчивой формы куба (см. рис. 2 в [4]).

Кубическая форма может реализовываться только при определенном числе атомов, из которого можно построить бездефектный куб $N_{cube} = \text{INT}[N_{po}^3/\alpha]$, где $N_{po} = 2, 3, 4, \ldots$, где функция INT[X] округляет величину X до целого значения, ибо число N целое по определению. Легко понять, что при "некубичном" значении числа атомов ($N \neq N_{cube}$) бездефектный параллелепипед может иметь либо пластинчатую, либо стержневидную форму, причем $k_3^*(N_{cube} \pm 1) < k_3^*(N_{cube})$. Таким образом, изоморфная (т.е. рассчитанная при f = const) зависимость $k_3(N)$ монотонно уменьшается при уменьшении N, но общая зависимость $k_3(N)$ имеет осциллирующую форму с максимумами в точках $k_3(N_{cube})$,

соответствующих нанокристаллам с кубической формой, и с минимумами при таких значениях $N \neq N_{cube}$, из которых можно построить только бездефектный стержень [3–5].

Из выражений (1) и (2) для зависимости температуры фазового перехода ($\Phi\Pi$) кристалл—жидкость от размера нанокристалла (N или d) можно получить:

$$T_m^*(N, f) = \left\{ 1 - \{ \text{INT}[C_N(\alpha, f)] / N \}^{1/3} \right\} [c^*(N, f)]^{-2(3\gamma - 1)},$$

$$T_m^*(d, f) = \left\{ 1 - C_d(\alpha, f) [c(N, f) / d] \right\} [c^*(d, f)]^{-2(3\gamma - 1)},$$
(4)

где введены функции, зависящие от формы и структуры нанокристалла:

$$C_N(\alpha, f) = [Z_s(f)]^3 \alpha^2, \quad C_d(\alpha, f) = 3^{1/2} L_d(f) \alpha.$$

Если допустить, что поверхностное давление для нанокристалла пренебрежимо мало, то среднее расстояние между центрами ближайших атомов $c^*(N, f)$ не изменяется с размером нанокристалла. Тогда выражения (4) упрощаются к виду

$$T_{m}^{*}(N, f) \cong 1 - \left\{ \text{INT}[C_{N}(\alpha, f)]/N \right\}^{1/3},$$

$$T_{m}^{*}(d, f) \cong 1 - C_{d}(\alpha, f)[c(N = \infty)/d].$$
 (5)

Именно такие функциональные зависимости от размера и были получены в теоретических и экспериментальных работах, изучавших плавление нанокристаллов [1,2,6–10].

Из (5) легко понять, что "критический диаметр" нанокристалла (при котором выполняется: $T_m^*(d_{cr}, f) = 0$) определяется выражением

$$d_{cr} = C_d(\alpha, f)c(N = \infty) = [\pi/6k_y(3)][(2f+1)(2+f^2)^{1/2}/3f]c(N = \infty).$$
(6)

Из (6) видно, что при отклонении формы нанокристалла от кубической величина d_{cr} будет увеличиваться, поэтому $T_m^*(d, f \neq 1) < T_m^*(d, f = 1)$. Таким образом, если $c^*(N, f)$ не изменяется с размером нанокристалла, то изоморфная зависимость $T_m^*(d, f \neq 1)$ всегда будет проходить ниже, чем изоморфа для кубической формы $T_m^*(d, f = 1)$, причем при любом значении f изоморфная зависимость $T_m^*(d, f)$ будет монотонно убывать с уменьшением размера нанокристалла. Поэтому общая размерная зависимость $T_m^*(d)$ будет иметь осциллирующий вид, аналогичный зависимости $k_3(d)$.

Но если при уменьшении размера нанокристалла возникает поверхностное давление, то величина $c^*(N, f)$ может изменяться и влиять на зависимость $T_m^*(N, f)$ для нанокристалла со свободной поверхностью. В работах [11,12] было показано, что в зависимости от свойств вещества и температуры, поверхностное давление, которое изменяется $\sim N^{-1/3}$, может не только сжимать, но и растягивать нанокристалл.

рис. 1 схематично представлена зависимость поверх-Ha от относительной температуры $T_e =$ ностного давления P_s $= T/\Theta(N = \infty)$ при различных значениях "размерного аргумента" $k_3^*(N, f) = k_3(N, f)/k_3(N = \infty)$, построенная на основании результатов работ [11,12]. Из рис. 1 видно, что на зависимости $P_s(k_3^*, T_e)$ имеется температурная точка, где все зависимости $P_s(k_3^*, T_e)$ пересекаются. Это означает, что в этой точке поверхностное давление не зависит от "размерного аргумента" k_3^* нанокристалла. Назовем эту точку "температурой инверсии размерной зависимости поверхностного давления" и обозначим: $T_{ei} = T_i / \Theta(\infty)$. При $T < T_i$ изотермическое диспергирование кристалла приводит к увеличению поверхностного давления в нанокристаллах, а при $T > T_i$ — к уменьшению величины $P_s(N)$. Из рис. 1 видно, что для нанокристалла с определенным значением "размерного аргумента" наблюдается определенная температура: $T_{e0}(k_3^*) = T_0(k_3^*) / \Theta(\infty)$, при которой функция поверхностного давления меняет знак $P_s(k_3^*, T_{e0}) = 0.$ Как показано в [11,12], эта "температура нулевого поверхностного давления" зависит как от природы кристалла, так и от "размерного аргумента" k_3^* .

Эффекты, изображенные на рис. 1, можно объяснить тем, что на поверхности нанокристалла имеются две конкурирующие силы:

1. Результирующая составляющая сил притяжения поверхностного атома со стороны окружающих его соседних атомов. Эта сила (макси-

Рис. 1. Схематичное поведение поверхностного давления P_s в зависимости от относительной температуры $T_e = T/\Theta(\infty)$, при "размерном аргументе", равном: $k_3^* = 0.9$ — сплошная линия; $k_3^* = 0.7$ — пунктир; $k_3^* = 0.5$ — точечная линия.

мальная для атомов на ребрах и особенно в вершинах параллелепипеда) стремится втянуть поверхностный атом внутрь нанокристалла. Эта сила сжимает нанокристалл тем сильнее, чем меньше k_3^* .

2. Сила, возникающая из-за колебаний атомов. Эта сила стремится вытолкнуть поверхностный атом из нанокристалла, и именно эта сила растягивает поверхность нанокристалла. Причем энергия и давление колебаний атомов растут с температурой.

При низких температурах для "не квантовых" нанокристаллов преобладает первая сила. Но по мере увеличения температуры растет вторая сила, причем растяжение от колебаний растет тем заметнее, чем меньше величина "размерного аргумента" k_3^* . Это приводит к тому, что при "температуре инверсии" T_i размерные зависимости первой и второй силы компенсируют друг друга и поверхностное давление при T_i не зависит от "размерного аргумента" k_3^* нанокристалла. При "температуре нулевого поверхностного давления" $T_0(k_3^*)$ величины этих двух конкурирующих сил уравновешивают друг друга, что приводит к нулевому значению поверхностного давления.

Как видно из рис. 1, в зависимости от того, какое значение имеет температура $\Phi\Pi$ кристалл-жидкость $T_m(k_3^*)$, можно рассмотреть три различных случая.

1. ФП кристалл-жидкость происходит в области "низких *температур"* $T_m(k_3^*) < T_i$. Нанокристаллы здесь сжаты поверхностным давлением тем больше, чем меньше значение k_3^* . При нагреве плавиться сначала будут нанокристаллы с большим значением k_3^* , а кристаллизоваться при охлаждении в первую очередь будут нанокристаллы с меньшим значением k_3^* . Другими словами, из совокупности изомерных (где *N*-const) нанокристаллов кубические будут иметь меньшую температуру ФП кристалл-жидкость, чем нанокристаллы с "некубическими" формами поверхности. Из совокупности изоморфных (где f - const) нанокристаллов большее значение температуры перехода будут иметь нанокристаллы с меньшим значением N из-за большей степени сжатия. Так как в этой области температур $c^*(k_3^*) \sim k_3^*$, то из (1) и (4) легко понять, что осцилляции функции c*(N) будут ослаблять осцилляции функции $k_3^*(N)$. Поэтому функция $T_m^*(N) \cong k_3^*(N) [c^*(N)]^{-2(3\gamma-1)}$ здесь будет осциллировать менее заметно, чем функция $c^*(N)$ или $k_3^*(N)$ каждая по отдельности. По мере приближения к "температуре инверсии" T_i зависимость функции $P_s(k_3^*)$ будет ослабляться, причем при $T_m(N) = T_i$ функция поверхностного давления P_s , а потому и функция c^* не будут иметь зависимости от "размерного аргумента" k_3^* .

2. ФП кристалл-жидкость происходит в области "средних температур" $T_i < T_m(k_3^*) < T_0(k_3^*)$. Нанокристаллы здесь сжаты поверхностным давлением тем заметнее, чем больше значение k_3^* . Плавиться при нагреве сначала будут нанокристаллы с меньшим значением k_3^* , а кристаллизоваться при охлаждении будут в первую очередь нанокристаллы с большим значением k_3^* . Из совокупности изомерных

(N- const) нанокристаллов кубические будут иметь большую температуру ФП кристалл-жидкость, чем нанокристаллы с "некубическими" формами поверхности. Среди изоморфных (f- const) нанокристаллов большее значение температуры перехода будут иметь нанокристаллы с большим значением N из-за большей степени сжатия, но сжатие здесь меньше, чем в области "низких температур". Фактически в этой области температур можно принять, что функция $c^*(N, f)$ не изменяется с размером нанокристалла, и поэтому справедливы выражения (5).

3. ФП кристалл-жидкость происходит в области "высоких *температур*" $T_m(k_3^*) > T_0(k_3^*)$. Здесь нанокристаллы растянуты поверхностным давлением тем больше, чем меньше значение k_3^* . Так же как и в области "средних температур", здесь плавиться будут сначала нанокристаллы с меньшим значением k_3^* , а кристаллизоваться нанокристаллы с большим значением k_3^* . Из совокупности изомерных нанокристаллов кубические будут иметь большую температуру ФП кристалл-жидкость, чем нанокристаллы с "некубическими" формами поверхности. Среди изоморфных нанокристаллов большее значение температуры перехода будут иметь нанокристаллы с большим значением N, из-за меньшей степени растянутости. В данной области температур среднее расстояние между центрами ближайших атомов $c^{*}(k_{3}^{*})$ будут тем больше, чем меньше значение k_{3}^{*} . Поэтому из (1) и (4) легко понять, что осцилляции размерной зависимости функции $c^*(N)$ будут усиливать осцилляции функции $k_3^*(N)$ и функция $T_m^*(N) \cong k_3^*(N) [c^*(N)]^{-2(3\gamma-1)}$ здесь будет осциллировать более заметно, чем функции $c^*(N)$ или $k_3^*(N)$ каждая по отдельности. По мере роста величины $T_m^*(N) - T_0(N)$ размерные осцилляции функции поверхностного давления $P_s(N)$ и функции $c^*(N)$ будут усиливаться (см. рис. 1), и тем заметнее будут осцилляции функции $T_m(N)$ по сравнению с осцилляцией функции $c^*(N)$ или $k_3^*(N)$ в данной области значений N.

На рис. 2 и 3 схематично изображены по две зависимости температур ФП кристалл-жидкость для изоморфных и изомерных нанокристаллов. Причем показана как изохорная (c-const) зависимость функции $T_m^*(N, f)$, так и ее поведение вдоль изобары (P-const). Данные зависимости на обоих рисунках пересекаются при "температуре нулевого поверхностного давления" $T_0(N, f)$, ибо в этой точке $P_s(k_3^*) = 0$ и поэтому выполняется $c^*(k_3^*) = 1$. Изобары пересекаются между собой при "температуре инверсии" T_i , которая от k_3^* не зависит.

Рис. 2. Схематичное изображение двух изоморфных зависимостей температуры $\Phi\Pi$ кристалл—жидкость от *N* при изохорическом *c* – const (монотонно уменьшаются) и изобарическом *P* – const (имеют минимум) процессе. Изоморфы f = 1 (изохора и изобара) изображены сплошными линиями, изоморфы $f \neq 1$ изображены пунктиром.

Рис. 3. Схематичное изображение двух изомерных зависимостей нормированной температуры ФП кристалл—жидкость от параметра формы нанокристалла f. Изохоры c—const монотонно убывают от оси f = 1, а изобары P—const имеют минимум. Сплошными линиями изображены изомерные зависимости, где число атомов равно N_B , а пунктиром — зависимости, где число атомов меньше $N_m < N_B$.

В выражения (1) и (4) входит параметр Грюнайзена, который очень слабо зависит от размера нанокристалла [4,5]. Поэтому легко понять, что осцилляции функции $T_m(N)$ будут заметнее ослабляться или усиливаться (из-за поверхностного давления) в веществах, где $\gamma > 2$, например: кристаллы инертных газов, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Ta, Pb, U, Tc, Re, Rh, Pd, Os, Ir, Pt, Pu, изотопы водорода [13] и особенно фуллериты C_{nc} (где nc > 30) [14,15].

Автор выражает благодарность А.Д. Филенко, К.Н. Магомедову и 3.М. Сурхаевой за плодотворные дискуссии и помощь в работе.

Работа выполнена при финансовой поддержке Отделения ЭММи-ПУ РАН (контракт № ИПГ-06-ЭО) и РФФИ (грант № 05-08-33468а).

Список литературы

- [1] Иевлев В.И. // ФТТ. 1991. Т. 33. № 5. С. 1610–1612.
- [2] Zhao M., Jang Q. // Solid State Communications. 2004. V. 130. N 1. P. 37-39.
- [3] Магомедов М.Н. // Поверхность. 2005. № 1. С. 94-104.
- [4] Магомедов М.Н. // ФТТ. 2004. Т. 46. № 5. С. 924–937.
- [5] Магомедов М.Н. // ЖФХ. 2005. Т. 79. № 5. С. 829–838.
- [6] Петров Ю.И. Физика малых частиц. М.: Наука, 1982. 360 с.
- [7] Зубов В.И. // Ж. Всесоюзн. хим. общества им. Д.И. Менделеева. 1991. Т. 36.
 № 2. С. 133–137.
- [8] Нагаев Э.Л. // УФН. 1992. Т. 162. № 9. С. 49–54.
- [9] *Коверда В.П.* // Физика металлов и металловедение. 1981. Т. 51. № 3. С. 569–573.
- [10] Wautelet M. // J. Phys. D: Appl. Phys. 1991. V. 24. N 3. P. 343–346.
- [11] Магомедов М.Н. // Письма в ЖТФ. 2005. Т. 31. В. 1. С. 24–33.
- [12] Магомедов М.Н. // Теплофизика высоких температур. 2005. Т. 43. № 6. С. 870–879.
- [13] Магомедов М.Н. // Теплофизика высоких температур. 2006. Т. 44. № 4. С. 518–533.
- [14] Магомедов М.Н. // ФТТ. 2005. Т. 47. В. 4. С. 758–766.
- [15] Магомедов М.Н. // ФТТ. 2006. Т. 48. В. 11. С. 2099–2103.