$^{05.1}$ Упругие свойства ториевых керамик ThX (X = C, N, O, P, As, Sb, S, Se)

© И.Р. Шеин, К.И. Шеин, А.Л. Ивановский

Институт химии твердого тела УрО РАН, Екатеринбург E-mail: shein@ihim.uran.ru

Поступило в Редакцию 4 сентября 2006 г.

Полнопотенциальным методом присоединенных плоских волн с обменнокорреляционным потенциалом в приближении обобщенной градиентной аппроксимации (FLAPW-GGA) проведены расчеты упругих констант (C_{11} , C_{12} и C_{44}) всех известных кубических бинарных фаз теория с неметаллами ThX (X = C, N, O, P, As, Sb, S, Se). Впервые выполнены численные оценки и дается анализ упругих параметров соответствующих поликристаллических керамик: модулей объемного сжатия, сдвига, Юнга, отношения Пуассона и коэффициентов Ламэ.

PACS 62.20.-x

Керамики на основе соединений тория с неметаллами привлекают внимание как перспективные материалы атомной промышленности в производстве композиционных реакторных и высокопрочных конструкционных материалов. Важный класс этих материалов составляют керамики на основе кубических (типа B1, простр. группа Fm3m) соединений тория с 2p-4p элементами (ThX, где X = C, N, O, P, As, Sb, S, Se). Технологические перспективы торийсодержащих керамик определяются совокупностью их физико-химических свойств, к важнейшим из которых относятся механические характеристики. Экспериментальные оценки упругих параметров ThX керамик могут заметно отличаться в зависимости от способа их синтеза, пористости, размеров зерен, наличия примесей и т.д. [1]. Оценка в рамках единого подхода упругих параметров ThX керамик представляется важным как для анализа их изменения в зависимости от состава, так и для прогноза механических свойств более сложных по составу легированных торийсодержащих керамик — например, на основе оксинитридов, карбонитридов или оксисульфидов Th [1-3].

72

В настоящей работе впервые представлены:

1) систематические ab initio расчеты упругих констант (C_{ij}) всех известных кубических бинарных фаз тория с неметаллами ThX (X = C, N, O, P, As, Sb, S, Se);

2) численные оценки основных упругих параметров: модулей сжатия (*B*), сдвига (*G*), Юнга (*Y*), коэффициента сжимаемости (β), отношения Пуассона (ν) и констант Ламэ (μ , λ) соответствующих поликристаллических керамик.

Расчеты констант C_{ij} проведены полнопотенциальным линейным методом присоединенных плоских волн (FLAPW, код WIEN2k [4]) с обобщенной градиентной аппроксимацией (GGA) обменно-корреляционного потенциала [5]. Набор плоских волн K_{cut} определялся как $R_{mt}K_{cut} = 9.0$. Число k точек в неприводимой части зоны Бриллюэна составляло 47. На первом этапе определены равновесные структурные параметры ThX фаз. Из табл. 1 видно, что расчетные величины длин связей Th-X ($a_0/2$; где a_0 — параметр решетки) отличаются от экспериментальных [6] не более чем на ~ 1–3%, что типично для методов, использующих GGA аппроксимацию.

Величины независимых упругих констант (C_{11} , C_{12} и C_{44} , табл. 1) кубических ThX соответствуют критерию [7] для механически устойчивых кристаллов: ($C_{11} - C_{12}$) > 0; ($C_{11} + 2C_{12}$) > 0; $C_{11} > 0$; $C_{44} > 0$, для которых величины упругих модулей — сжатия ($B = (C_{11} + 2C_{12})/3$), сдвига ($G = C_{44}$) и тетрагонального сдвига ($G' = (C_{11} - C_{12}/2)$ положительны. Получено, что B > G' > G, т.е. для этих материалов параметром, лимитирующим их стабильность, является модуль сдвига G. Величина коэффициента упругой анизотропии $A = 2G/G' = 2C_{44}/(C_{11} - C_{12})$, который для упругоизотропных кристаллов равен единице, для ThX фаз меняется в пределах $0.9 \div 0.2$, при этом анизотропия минимальна для ThAs (0.89), ThC (0.77) и максимальна для ThP, ThS (0.22). Отклонение от соотношения Коши для упругоизотропных систем ($C_{12} = C_{44}$) составляет от 48.0 GPa (ThS) и 42.9 GPA (ThAs) до 12.2 GPa (ThP) и 7.1 GPa (ThSb).

Указанные параметры получены на основе FLAPW-GGA расчетов монокристаллов B1-ThX. Для определения макроскопических параметров упругости материалов обычно используют схемы Войгта (V) и Реусса (R) (см. [8]), в рамках которых модули сжатия определяются как

$$B_{V,R}=\frac{C_{11}+2C_{12}}{3},$$

Таблица 1. Межатомные растояния (Å), коэффициенты упругости (C_{11} , C_{12} и C_{44} , GPa), модули сжатия, сдвига и тетрагонального сдвига (B, G и G', GPa) и коэффициент упругой анизотропии (A) для B1–ThX монокристаллов согласно FLAPW-GGA расчетам

Параметр	ThC	ThN	ThP	ThAs
Th-X	2.650	2.576	2.933	3.006
	(2.673)*	(2.583)	(2.920)	(2.986)
C_{11}	252.2	396.6	273.3	212.4
C_{12}	96.3	101.5	38.4	
$C_{44}(G)$	60.2 77.0	79.9	26.1	78.8
B	148.3	199.9	116.7	94.8
Параметр	ThSb	ThO	ThS	ThSe
Th-X	3.241	2.556	2.863	2.975
	(3.159)	(2.651)	(2.842)	(2.931)
$C_{11} \\ C_{12}$	146.8	331.4	256.5	163.8
	22.1	74.6	68.7	69.3
$C_{44}(G) \ G'$	28.2	65.4	20.7	25.5
	62.4	128.4	93.9	33.8
B	63.7	160.2	131.3	100.8
A	0.45	0.51	0.22	0.54

* В скобках — экспериментальные данные, см. [6].

а модули сдвига соответственно

$$G_V = rac{C_{11} - C_{12} + 3C_{44}}{5}$$
 и $G_R = rac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - 3C_{12})}.$

Для оценок этих параметров для торийсодержащих керамик поликристаллических систем, предсталяющих собой агрегированную смесь микрокристаллитов со случайной взаимной ориентацией, необходимо ввести процедуру усреднения величин, получаемых по схемам Войгта и Реусса. Для этой цели использовали аппроксимацию Войгта–Реусса–Хилла (VRH), см. [8], и получали величины усредненных модулей сжатия (B_{VRH}) и сдвига (G_{VRH}), затем для ThX керамик

Таблица 2. Упругие параметры ThX керамик: модули сжатия, сдвига, Юнга (B_{VRH} , G_{VRH} , Y_{VRH} , в GPa), коэффициенты сжимаемости (β , 1/GPa), отношение Пуассона (ν), коэффициенты Ламэ (μ , λ , GPa) в аппроксимации Войгта–Реусса–Хилла (VRH) и число валентных электронов N(e)

Параметр	ThC	ThN	ThP	ThAs
B_{VRH}	148.3	199.9	116.7	94.8
G_{VRH}	66.7	102.4	50.2	82.4
ν	0.304	0.281	0.313	0.163
β	0.006743	0.005003	0.008569	0.010554
Y_{VRH}	174.1	262.5	131.8	191.7
G_{VRH}/B_{VRH}	0.45	0.51	0.43	0.86
λ	103.8	131.6	84.0	39.8
μ	66.7	102.4	50.2	82.4
N(e)	8	9	9	9
Параметр	ThSb	ThO	ThS	ThSe
B_{VRH}	63.7	160.2	131.3	100.8
G_{VRH}	39.0	86.0	40.1	32.7
Ν	0.246	0.272	0.362	0.353
В	0.015708	0.006242	0.007618	0.009924
Y_{VRH}	97.1	218.8	109.1	88.6
G_{VRH}/B_{VRH}	0.62	0.54	0.31	0.33
λ	37.7	102.9	105.3	79.0
μ	38.9	85.9	40.0	32.7
N(e)	9	10	10	10

определяли модули Юнга (Y_{VRH}):

$$Y_{VRH}=\frac{9B_{VRH}G_{VRH}}{3B_{VRH}+G_{VRH}},$$

а также отношения Пуассона (ν) и коэффициенты Ламэ (μ , λ):

$$\nu = \frac{3B_{VRH} - 2G_{VRH}}{2(3B_{VRH} + G_{VRH})}, \quad \mu = \frac{Y_{VRH}}{2(1+\nu)}, \quad \lambda = \frac{\nu Y_{VRH}}{(1+\nu)(1-2\nu)}.$$

Указанные параметры всех ThX керамик суммированы в табл. 2. Видно, что для карбидной, нитридной и оксидной керамик модуль B_{VRH} уменьшается в последовательности B_{VRH} (ThN) > > B_{VRH} (ThO) > B_{VRH} (ThC), что совпадает с известной тенденцией

Рис. 1. Зонная структура ThN (*1*) и ThO (*2*). Зоны (N,O)2*p*-состояний расположены в интервалах: $-1.1 \div -5.9 \text{ eV}$ (ThN) и $-4.2 \div -7.9 \text{ eV}$ (ThO) ниже уровня Ферми $E_F = 0 \text{ eV}$. Валентные зоны тория пересекают уровень Ферми.

понижения модулей сжатия карбидов Ті, Zr, Hf по сравнению с их нитридами [9]. Данную зависимость можно объяснить с учетом особенностей межатомных связей в этих материалах. Как показано в [10], введение в решетку тория *р*-элементов (С, N и О) приводит к образованию ковалентных Th-X связей, изменению величин Th-Th связей, а также сопровождается зарядовым переносом Th — X, который обусловливает ионную составляющую связей торий-неметалл. Тогда рост модуля сжатия при переходе от ThC к ThN следует отнести за счет упрочнения ковалентных Th-X связей в результате роста электронной концентрации (N(e)), в ячейке) при переходе от ThC (N(e) = 8e) к ThN (N(e) = 9e). В свою очередь, уменьшение B_{VRH} при дальнейшем росте N(e) в ряду ThN $(N(e) = 9e) \rightarrow \text{ThO}(N(e) = 10e)$ связано с ослаблением связей Th-O по сравнению с Th-N: как видно из приводимых на рис. 1 энергетических зон ThX (X = N,O), для оксида Th полоса O2p состояний отделена от полосы валентных состояний Th запрещенной щелью ~ 1.8 eV, что приводит к уменьшению гибридизации состояний торий-кислород. Соответственно сжимаемость ThX керамик

Рис. 2. Зависимости модулей сжатия (B_{VRH}) и сдвига (G_{VRH}) от концентрации валентных электронов N(e) для ThC, ThN и ThO керамик.

будет уменьшаться в ряду $\beta(\text{ThC}) > \beta(\text{ThO}) > \beta(\text{ThN})$. Отсюда, исходя из известных корреляций между модулем сжатия (сжимаемостью) и механической прочностью материалов [11], можно утверждать, что максимальной прочностью будет обладать торий-нитридная керамика.

Этот вывод подтверждается расчетами модуля сдвига G_{VRH} (табл. 2). Действительно, твердость материала определяют как его сопротивление (которое определено подвижностью дислокаций) другому материалу, проникающему через его поверхность. Таким образом, один из факторов твердости — прочность межатомных связей по отношению к сдвиговой деформации, от которой зависит подвижность дислокаций [12]. В нашем случае модуль сдвига G_{VRH} понижается (как и B_{VRH}) в последовательности G_{VRH} (ThN) > G_{VRH} (ThO) > G_{VRH} (ThC).

В рядах торийсодержащих керамик, для которых N(e) не меняется (ThN = TnP = ThAs; N(e) = 10e и ThO = ThS = ThSe; N(e) = 11e), их упругие параметры зависят от параметра решетки a_0 (длин межатомных связей Th-X). Из табл. 2 видно, что модуль сжатия B_{VRH}

уменьшается (сжимаемость β растет) в рядах ThN \rightarrow TnP \rightarrow ThAs и ThO \rightarrow ThS \rightarrow ThSe, т.е. с увеличением межатомных расстояний, следуя известной [8] тенденции $B_{VRH} \sim 1/V_0$ ($\beta \sim V_0$, где V_0 — объем ячейки). В этой же последовательности уменьшаются величины модуля сдвига G_{VRH} .

Отношения Пуассона ThX керамик изменяются обратно пропорционально величинам их приведенных модулей сдвига (G_{VRH}/B_{VRH} , табл. 2), которые в свою очередь меняются в интервале от 0.31 (ThS) до 0.86 (ThAs). Наиболее близка к значению G_{VRH}/B_{VRH} изотропного кристалла (0.6) величина $G_{VRH}/B_{VRH} = 0.62$ для ThSb. Для этого материала отношение Пуассона ($\nu = 0.246$) также оказывается близким к теоретическому для упругоизотропной среды ($\nu = 0.25$).

На рис. 2 представлены квадратичные аппроксимации зависимостей В_{VRH} и G_{VRH} для ThC, ThN и ThO от числа валентных электронов N(e), экстраполированные до значений N(e) = 7e и 11e. Видно, что при этих N(e) величины B_{VRH} и G_{VRH} резко уменьшаются (или становятся отрицательными), т.е. соответствующие кубические фазы "ThB" (N(e) = 7e) и "ThCI" (N(e) = 11e) неустойчивы, что полностью согласуется с экспериментом [1–3]. С другой стороны, максимумы кривых B_{VRH}(N(e)) и G_{VRH}(N(e)) соответствуют N(e) = 9.1-9.2e. Отсюда, можно прогнозировать, что механические свойства ThN керамики могут быть оптимизированы при введении в ее состав кислорода, т.е. при получении оксинитридной керамики в области составов ThN_{~0.9}O_{~0.1}.

Работа поддержана РФФИ, проект № 06-08-00808.

Список литературы

- [1] Freeman A.J., Lander G.H. (eds). Handbook of the Physics and Chemistry of the Actinides. North-Holland, Amsterdam, 1985.
- [2] Kleykamp H. Thorium Carbides. Gmelin Handbook of Inorganic and Organometallic Chemistry. Eighth ed. Thorium Supplement. V. C6. Berlin: Springer, 1992.
- [3] Bickel M., Wedemeyer H. Thorium. Compounds with Si, P, As, Sb, Bi, Ge. Gmelin Handbook of Inorganic and Organometallic Chemistry. Suppl. V. 8. Berlin: Springer, 1993.
- [4] Blaha P., Schwarz K., Madsen G.K.H., Kvasnicka D., Luitz J. WIEN2K, An Augmented Plane Wavelus Local Orbitals Program for Calculating Crystal Properties. Wien: Techn. Universität Wien, 2001.

- [5] Perdew J.P., Burke S., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. N 18.
 P. 3865–3868.
- [6] Benedict U. // J. Less Common Metals. 1987. V. 128. N 1. P. 7-45.
- [7] Wang J., Yip S., Phillpot S.R., Wolf D. // Phys. Rev. Lett. 1993. V. 71. N 25. P. 4182–4185.
- [8] Chen Q., Sundman B. // Acta mater. 2001. V. 49. P. 947–961.
- [9] Kral C., Lengauer W., Rafaja D., Ettmayer P. // J. Alloys Comp. 1998. V. 265. N 1/2. P. 215–233.
- [10] Shein I.R., Shein K.I., Ivanovskii A.L. // J. Nuclear Mater. 2006. V. 353. N 1/2. P. 19–26.
- [11] Haines J., Leger J.M., Bocquillon G. // Annu. Rev. Mater. Res. 2001. V. 31. P. 1–23.
- [12] Jhi S.-H., Ihm J., Louie S.G., Cohen M.L. // Nature (London). 1999. V. 399. N 6732. P. 132–134.