05

Емкость межфазных границ (001)SrRuO₃/(001)SrTiO₃ и (110)SrRuO₃/(110)SrTiO₃ в эпитаксиальных гетероструктурах, выращенных на алюминате лантана

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: yu.boikov@mail.ioffe.ru

Поступило в Редакцию 10 ноября 2005 г.

Температурная зависимость (T = 120-300 K) диэлектрической проницаемости ε слоя SrTiO₃ в гетероструктурах SrRuO₃/SrTiO₃/SrRuO₃, выращенных на пластинах (001) и (110)LaAlO₃, хорошо аппроксимировалась соотношением $\varepsilon_0/\varepsilon = C_0^{-1} \times (T - T_{CW}) + \varepsilon_0/\varepsilon_l$, где C_0 и T_{CW} практически совпадали с постоянной Кюри и температурой Кюри–Вейсса для монокристаллов SrTiO₃. Удельная емкость межфазных границ (001)SrRuO₃/(001)SrTiO₃ и (110)SrRuO₃/(110)SrTiO₃, рассчитанная с использованием полученных значений ε_l , составила 2.7 и 6.4 μ F/cm² соответственно.

PACS: 77.84.Lf

Эпитаксиальные гетероструктуры, включающие в себя тонкие пленки перовскито-подобных сегнетоэлектриков и проводящих оксидов (высокотемпературные сверхпроводники, рутенаты, манганиты, ...), перспективны для использования в элементах СВЧ-техники и ячейках памяти [1,2]. Диэлектрический отклик таких гетероструктур на изменение температуры и внешнее электрическое поле резко зависит как от структуры и ориентации сегнетоэлектрического слоя, так и от электронных параметров межфазных границ. В настоящее время в литературе имеется лишь ограниченное число работ [3,4], содержащих информацию о свойствах границ сегнетоэлектрик/электрод.

В данном письме приведены данные по структуре и диэлектрической проницаемости ε пленок титаната стронция в гетероструктурах SrRuO₃/SrTiO₃/SrRuO₃ (SRO/STO/SRO), выращенных на пласти-

88

нах (001) и (110)LaAlO₃ (LAO). Полученные результаты позволили оценить удельную емкость границ сегнетоэлектрик/электрод.

Трехслойные гетероструктуры (80 nm)SRO/(800 nm)STO/(80 nm)SRO были выращены на подложках LAO методом лазерного испарения (KrF, ComPex 200, $\lambda = 248$ nm, $\tau = 30$ ns). Технологические условия формирования пленок STO и SRO детализированы в [5]. Рентгеновская дифракция (CuK $_{\alpha}$, $\omega/2\theta$ - и ϕ -сканы) была использована для исследования фазового состава и структуры слоев в выращенных гетероструктурах. Емкость С плоскопараллельных пленочных конденсаторов SRO/STO/SRO, сформированных с применением фотолитографии и ионного травления [6], измерялась с использованием прибора hp 4263A LCR meter (f = 100 kHz), при подаче на электроды напряжения смещения $V_b = \pm 2.5 \,\mathrm{V}$ и без него. Морфология поверхности выращенных гетероструктур исследовалась с помощью микроскопа атомных сил (режим высоты). Эффективная диэлектрическая проницаемость сегнетоэлектрического слоя в гетероструктуре SRO/STO/SRO рассчитывалась с использованием соотношения $\varepsilon = Cd/S$, где d = 800 nm толщина пленки STO, а $S = 1 \cdot 10^{-4} \text{ cm}^2$ — площадь верхнего электрода SRO (нижний электрод из SRO был общим для всех 20 сформированных на одной подложке пленочных конденсаторов).

На рентгеновских дифрактограммах, полученных для гетероструктур SRO/STO/SRO/(001)LAO и SRO/STO/SRO/(110)LAO, присутствовали только пики от подложки, слоя STO и электродов SRO (см. рис. 1 и вставку b на нем), что позволяет говорить от отсутствии в их объеме макровключений вторичных фаз. Пики от электродов на рентгенограммах частично перекрывались с более интенсивными пиками от сегнетоэлектрического слоя, что приводило к искажению последних со стороны малых 20. Верхний электрод в выращенных гетероструктурах состоял из кристаллических зерен с размерами 100-200 nm (см. вставку *а* на рис. 1). Из полученных рентгеновских данных ($\omega/2\theta$ - и ϕ -сканы) следует, что кристаллиты в слоях SRO и STO в гетероструктурах SRO/STO/SRO, выращенных на обоих типах подложек, были четко преимущественно ориентированы как азимутально, так и относительно нормали к плоскости подложки. При этом и в электродах SRO, и в слое STO в гетероструктуре SRO/STO/SRO/(001)LAO параллельными поверхности подложки были плоскости (001), а в гетероструктуре SRO/STO/SRO/(110)LAO — плоскости (110). Одной из основных причин формирования малоугловых межкристаллитных границ в пленках,

Рис. 1. Рентгеновская дифрактограмма (CuK_{α}, $\omega/2\theta$), измеренная для гетероструктуры SRO/STO/SRO, выращенной на подложке (001)LAO. На вставке *а* приведено изображение свободной поверхности гетероструктуры SRO/STO/SRO/(001)LAO, полученное с использованием микроскопа атомных сил. Межкристаллитные границы декорированы характерными углублениями на свободной поверхности пленки SRO. На вставке *b* показан фрагмент рентгеновской дифрактограммы, полученной для гетероструктуры SRO/STO/SRO/(110)LAO.

составляющих гетероструктуру электрод/STO/электрод, является рассогласование в параметрах кристаллических решеток нижнего электрода и подложки (для пленки SRO (псевдокубическая элементарная ячейка, $a_1 = 3.923$ Å [7]) на подложке (001)LAO (псевдокубическая ячейка, $a_2 = 3.780$ Å [8]) рассогласование в параметрах кристаллических решеток составляло ~ 3.5%). Параметр кристаллической решетки в слое STO в гетероструктуре SRO/STO/SRO/(001)LAO, измеренных

Рис. 2. Температурные зависимости диэлектрической проницаемости $\varepsilon/\varepsilon_0$ (1, 2) и ее обратной величины $\varepsilon_0/\varepsilon$ (3, 4) для слоя STO в гетероструктурах SRO/ STO/SRO/(110)LAO (1, 4) и SRO/STO/SRO/(001)LAO (2, 3). Пунктиром показаны касательные к зависимостям $\varepsilon_0/\varepsilon(T)$ в интервале температуры 120–300 К. $\varepsilon_0/\varepsilon_I$ для слоя STO в гетероструктуре SRO/STO/SRO/(001)LAO отмечено двухсторонней стрелкой. На вставке приведены зависимости $\varepsilon/\varepsilon_0(V_b)$, измеренные для гетероструктур SRO/STO/SRO/(110)LAO (1) и SRO/STO/SRO/(001)LAO (2) при T = 55 К.

вдоль нормали к плоскости подложки $a_c = 3.907 \pm 0.005$ Å, практически совпадал с параметрами решетки $a_a = a_b = 3.909 \pm 0.005$ Å в слое титаната стронция в гетероструктуре SRO/STO/SRO/(110)LAO, рассчитанными с использованием величины угла 2θ для пика (220)STO. Полученные значения для параметров a_a , a_b , a_c хорошо согласуются с параметром кубической элементарной ячейки в монокристаллах STO $(a_3 = 3.905$ Å [8]).

Температурные зависимости диэлектрической проницаемости промежуточного слоя STO в гетероструктурах SRO/STO/SRO/(001)LAO и SRO/STO/SRO/(110)LAO приведены на рис. 2. Максимальные значения $\varepsilon/\varepsilon_0$ слоя STO в обоих типах гетероструктур наблюдались при $T_M = 55$ K, причем значение $\varepsilon/\varepsilon_0(T_M)$ для слоя титаната стронция, выращенного на SRO/(110)LAO, на 40–50% превышало соответствующую величину для сегнетоэлектрического слоя, сформированного на SRO/(001)LAO. В интервале температуры 120–300 K обратная величина диэлектрической проницаемости $\varepsilon_0/\varepsilon$ для слоя STO в обоих типах исследованных гетероструктур SRO/STO/SRO следовала соотношению

$$\varepsilon_0/\varepsilon = C_0^{-1} \times (T - T_{CW}) + \varepsilon_0/\varepsilon_I, \tag{1}$$

где $C_0 \approx 10^5 \,\mathrm{K}$ и $T_{CW} = 30 \,\mathrm{K}$ практически совпадали с постоянной Кюри и температурой Кюри-Вейсса для объемных кристаллов титаната стронция [9,10] соответственно. Второе слагаемое в правой части соотношения (1) не зависело ни от температуры, ни от напряженности электрического поля ($E \leq 30 \, \text{kV/cm}$), но зависело от типа гетероструктуры. Заметная реакция є слоя STO в выращенных гетероструктурах на напряжение V_b наблюдалась при T < 100 К. При T_M отношение $[\varepsilon(V_b = -2.5 \text{ V}) - \varepsilon(0)]/\varepsilon(0)$ для слоя STO в гетероструктуре SRO/STO/SRO/(110)LAO достигало 35% (см. вставку на рис. 2). Величина є в случае гетероструктуры SRO/STO/SRO/(001)LAO равнялась $1250\varepsilon_0$ ($\varepsilon_0/\varepsilon_1$ показано двухсторонней стрелкой на рис. 2), но составляла 2950є0 для гетероструктуры SRO/STO/SRO/(110)LAO. Соотношение (1) является отражением того факта, что величина С для сформированных гетероструктур определялась емкостью, связанной с сегнетоэлектрическим слоем С_F и соединенной с ней последовательно емкостью межфазных границ C_I , обусловленной проникновением электрического поля в электроды [11], т.е. $C = C_F \times C_I / (C_F + C_I)$. Используя полученные значения ε_I , мы оценили емкость межфазных границ $C_I = \varepsilon_I S/d$ в пленочных конденсаторных структурах SRO/STO/SRO/(001)LAO ($\approx 0.14 \, \text{nF}$) и SRO/STO/SRO/(110)LAO ($\approx 0.32 \, \mathrm{nF}$). Удельная емкость $C_N = 2C_I/S$ межфазной границы STO/SRO в гетероструктурах SRO/STO/SRO, сформированных на подложках (001)LAO и (110)LAO, составила 2.7 и $6.4 \mu F/cm^2$ соответственно. Полученные значения C_N для границ STO/SRO в выращенных гетероструктурах согласуются с имеющимися в литературе соответствующими данными для межфазных границ

Pt/(Ba,Sr)TiO₃ [12] и La_{0.67}Ca_{0.33}MnO₃/STO [13], однако они примерно на порядок величины меньше значения C_N , приведенного в [4] для пленочного контакта SRO/(Ba,Sr)TiO₃.

Емкость межфазной границы SRO/STO определяется эффективной глубиной проникновения [11] электрического поля в электрод и диэлектрической проницаемостью SRO. Среди возможных механизмов, ответственных за существенные различия в значениях С_N, полученных для межфазных границ (001)SRO/(001)STO и (110)SRO/(110)STO в исследованных гетероструктурах SRO/STO/SRO, следует отметить следующие: а) различия в модулях упругости, определяющих энергию упругой деформации пленок (001)SRO/(001)LAO и (110)SRO/(110)LAO, должны приводить к различиям в динамике релаксации механических напряжений в их объеме. Релаксация напряжений в пленке SRO сопровождается формированием дефектов структуры, от плотности которых резко зависят электронные параметры рутената стронция (глубина проникновения электрического поля в электрод зависит от концентрации носителей заряда в его объеме), б) двухосные механические напряжения могут оказывать влияние на диэлектрическую проницаемость слоев, составляющих гетероструктуру. Согласно [9], ε монодоменных кристаллов STO анизотропна, причем $\varepsilon_{(001)} < \varepsilon_{(110)}$, в) пленки SRO, выращенные на (001) и (110)LAO, имеют разную шероховатость свободной поверхности, это может сказываться на эффективной площади контакта SRO/STO.

В заключение мы хотели бы отметить, что выбор ориентации подложки имеет существенное значение для оптимизации диэлектрического отклика гетероструктуры электрод/сегнетоэлектрик/электрод на изменение температуры и электрическое поле.

Финансовая поддержка данной работы была частично получена из проекта 04-02-16738 Российского фонда фундаментальных исследований.

Список литературы

- [1] Hong J.P., Lee J.S. // Appl. Phys. Lett. 1996. V. 68. N 21. P. 3034.
- [2] Hwang C.S. // Mater. Sci. Eng. B. 1998. V. 56. N 2-3. P. 178.
- [3] Boikov Yu.A., Claeson T. // Phys. Rev. B. 2004. V. 70. N 18. P. 184433.

- [4] Dittmann R., Plonka R., Vasco E., Pertsev N.A., He J.Q., Jia C.L., Hoffmann-Eifert S., Waser R. // Appl. Phys. Lett. 2003. V. 83. N 24. P. 5011.
- [5] Бойков Ю.А., Эртс Д., Клаесон Т., Бойков А.Ю. // ФТТ. 2002. Т. 44. В. 11. С. 2061.
- [6] Бойков А.Ю., Клаесон Т. // ФТТ. 2001. Т. 43. В. 2. С. 323.
- [7] Jiang J.C., Tian W., Pan X., Gan Q., Eom C.B. // Mater. Sci. Eng. B. 1998.
 V. 56. N 2–3. P. 152.
- [8] Wyckoff R.W.J. // Crystal Strucrute / 2nd edn. V. 2. Interscience Publ., N.Y., 1964. P. 393, 394.
- [9] Hilton A.D., Ricketts B.W. // J. Phys. D: Appl. Phys. 1996. V. 29. N 5. P. 1321.
- [10] Neville R.C., Hoeneisen B., Mead C.A. // J. Appl. Phys. 1972. V. 43. N 5. P. 2124.
- [11] Ku H.Y., Ullman F.G. // J. Appl. Phys. 1964. V. 35. N 2. P. 265.
- [12] Streiffer S.K., Basceri C., Parker C.B., Lach S.E., Kingon A.I. // J. Appl. Phys. 1999. V. 86. N 8. P. 4565.
- [13] Бойков А.Ю., Данилов В.А. // Письма в ЖТФ. 2004. Т. 30. В. 9. С. 26.