10, 19, 16

Радиационная устойчивость LaPO₄ (структура монацита) и YbPO₄ (структура циркона) по данным компьютерного моделирования

© А.Е. Гречановский¹, Н.Н. Еремин², В.С. Урусов^{2,3}

¹ Институт геохимии, минералогии и рудообразования им. Н.П. Семененко НАН Украины, Киев, Украина

² Московский государственный университет им. М.В. Ломоносова,

Москва, Россия

³ Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва, Россия

E-mail: grechanovsky@gmail.com, neremin@geol.msu.ru

(Поступила в Редакцию 20 марта 2013 г.)

Радиационная устойчивость монацита LaPO₄ и соединения YbPO₄ (структурный тип циркона) изучена методами компьютерного моделирования. Количество френкелевских пар, которые формируются в структуре этих минералов после прохождения первично выбитого атома тория с энергией 30 keV, рассчитано с помощью метода молекулярной динамики.

Рассмотрено формирование френкелевских пар, а также их рекомбинация при движении ядра отдачи в структуре изучаемых минералов. Показано, что вероятность "выживания" френкелевских пар значительно ниже в монаците LaPO₄, чем в YbPO₄.

Склонность этих минералов к аморфизации под действием радиационного повреждения охарактеризована численно. Полученные результаты показывают, что одним из главных факторов, определяющих радиационную устойчивость ортофосфатов LnPO₄, является тип кристаллической структуры, причем соединения со структурой монацита являются более радиационно устойчивыми, чем соединения со структурой циркона.

Работа выполнена при финансовой поддержке РФФИ (проекты № 12-05-90910-мол_снг_нр, 12-05-00809-а, 12-05-00983-а). Компьютерное моделирование выполнено на суперкомпьютере СКИФ МГУ "ЧЕБЫШЁВ".

1. Введение

В последние десятилетия в ряде стран наметилась тенденция увеличения использования электроэнергии, вырабатываемой на АЭС. Так, по данным МАГАТЭ за 2009 г. доля электроэнергии, вырабатываемой на АЭС, составляет 75% во Франции, 49% на Украине, 20% в США, 18% в РФ [1]. С другой стороны, перспективы развития ядерной энергетики связаны со способностью эффективного обращения с ядерными отходами.

Развитие ядерной энергетики порождает ряд проблем, которые касаются утилизации долгоживущих радиоактивных отходов и плутония. Одной из главных проблем в этом смысле является выбор радиационно устойчивых матриц, которые при контакте с долгосуществующими высокоактивными радиоактивными отходами (ВАО) на протяжении длительного времени не будут изменять свои физико-химические свойства. На данный момент в качестве матрицы для отработанного топлива используют алюмофосфатные или боросиликатные стекла. Однако ВАО могут храниться в таких матрицах не более 30–40 лет.

Это является причиной того, что активно продолжается поиск матриц с более приемлемыми эксплуатационными характеристиками. Было установлено, что для утилизации ВАО кристаллическая керамика подходит значительно лучше. К настоящему времени разработан ряд керамических материалов для утилизации ВАО и плутония. Активно исследуются такие материалы, как циркон $ZrSiO_4$, пирохлоры $Gd_2Ti_2O_7$ и $Gd_2Zr_2O_7$, монациты (La,Ce,Nd)PO₄, цирконолит CaZrTi₂O₇, перовскит CaTiO₃ и другие сложные оксиды, а также рутил TiO₂ и бадделеит ZrO_2 .

Многие исследователи рассматривают циркон как перспективную матрицу для утилизации ядерного топлива и оружейного плутония [2–8]. Однако на протяжении геологического времени альфа-распад атомов урана и тория приводит к повреждению структуры циркона и его переходу из кристаллического в рентгеноаморфное (метамиктное) состояние. Каждый акт альфа-распада приводит к возникновению альфа-частицы и тяжелого атома отдачи [9]. Альфа-частицы с энергией 4.2–5.5 MeV, как было отмечено в [8], смещают около 100 атомов в конце пути, длина которого составляет $10-20 \,\mu$ m, а тяжелые атомы отдачи с энергией $70-90 \,\text{keV}$ смещают несколько тысяч атомов в интервале 20 nm.

В качестве перспективной замены циркона можно рассматривать существующие в природе ортофосфаты $LnPO_4$ (Ln — лантаноид) со структурой монацита и циркона и их искусственные аналоги. В отличие от циркона эти соединения очень редко находятся в метамиктном состоянии, несмотря на значительное присутствие атомов тория и урана [10]. Ортофосфаты, содержащие тяжелые редкоземельные элементы (Tb, Tm, Yb, Lu), кристаллизуются в тетрагональной структуре циркона ($I4_1/amd$) [11,12]. Монациты, содержащие более легкие и крупные редкоземельные элементы (от La до Dy), характеризуются моноклинной монацитовой структурой ($P2_1/n$) [13].

Ранее были проведены эксперименты по изучению радиационной устойчивости этих соединений [10,14]. Результаты этих работ показали, что ортофосфаты со структурой монацита характеризуются большей радиационной устойчивостью, чем ортофосфаты, содержащие тяжелые редкоземельные элементы. Так, критическая температура аморфизации T_c (температура, выше которой материал не переходит в аморфное состояние при облучении потоком тяжелых частиц) составляет $T_c \sim 1000$ К для циркона [14], 570 К для соединения YbPO₄ со структурой циркона и 333 К для монацита LaPO₄ [10].

Процессы формирования и отжига поврежденной области, возникающей в результате альфа-распада, как правило, длятся десятки пикосекунд. Поэтому для изучения повреждения минералов под действием альфа-распада кроме экспериментальных исследований крайне полезно проведение компьютерных модельных экспериментов.

Целью настоящей работы является компьютерное изучение механизмов формирования каскада смещений и последующих релаксационных процессов в структуре монацита LaPO₄ и YbPO₄ со структурой циркона в результате альфа-распада под действием ядра отдачи.

2. Методика моделирования

Метод молекулярной динамики (МД) состоит в вычислении траекторий движения всех атомов системы на основе второго закона Ньютона. В качестве начальных данных задаются начальные координаты и скорости всех атомов, а также межатомные потенциалы взаимодействия. В большинстве таких модельных "экспериментов" атомы наделяются некоторыми эффективными зарядами [15]. Величина этих зарядов зависит от степени ковалентности межатомных связей и может изменяться от нуля (для ковалентных соединений) до значений формальных зарядов ионов (для ионных кристаллов). Кроме кулоновского взаимодействия всех электростатических зарядов между собой в потенциале межатомного взаимодействия учитываются отталкивание электронных оболочек атомов и диполь-дипольное взаимодействие между атомами с помощью короткодействующих потенциалов следующего вида:

а) потенциала Букингема

$$V(r) = A \exp(-r/\rho) - Cr^{-6},$$
 (1)

где r — расстояние между двумя атомами (Å), A — предэкспоненциальный множитель для члена, характеризующего отталкивание (eV), ρ — параметр жесткости (Å), C — силовой параметр ван-дер-ваальсовского взаимодействия (eV · Å⁶);

b) потенциала Морзе

$$V(r) = D[\exp(-2\sigma(r-r_0)) - 2\exp(-\sigma(r-r_0))], \quad (2)$$

где D — энергия диссоциации связи между атомами (eV), σ — параметр мягкости (Å⁻¹), r_0 — стандартная длина связи между атомами (Å). Радиус действия потенциалов Букингема и Морзе R_{max} составляет, как правило, от 8 до 12 Å.

В структуре монацита был выбран фрагмент, содержащий около 5 миллионов атомов. Один из атомов лантана был заменен атомом тория. На предварительном этапе моделирования фрагмент структуры приводился в состояние теплового равновесия в течение 10 рѕ при температуре моделирования T_{mod} (300 K) с использованием ансамбля *NPT* (число атомов *N* во фрагменте структуры, давление *P* на его стенки и температура *T* постоянны). На малых межатомных расстояниях (меньше 1 Å) использовался потенциал межъядерного отталкивания *ZBL*, который вводился для корректного учета сильного межъядерного отталкивания [16]. Временной шаг моделирования составлял 0.5 fs.

Основной этап моделирования выполнялся с использованием микроканонического ансамбля NVE (число атомов N во фрагменте структуры, объем структуры V и энергия E постоянны). В начале этого этапа задавались направление движения и скорость атома тория, которая соответствовала определенной кинетической энергии. Эта энергия была ограничена количеством атомов во фрагменте (из расчета 25–50 атомов на 1 eV в зависимости от упругих свойств минерала).

В качестве программы по МД-моделированию был выбран программный комплекс DL_POLY [17], ориентированный на моделирование фрагментов структур минералов, макромолекул, полимеров и ионных систем.

На протяжении времени t = 0-1 рs скорость некоторых атомов может достигать достаточно больших значений (вплоть до 10^3 Å/ps и выше). Поэтому для регулирования значения интервала времени Δt , соответствующего одному шагу моделирования, использовался алгоритм "переменного временно́го шага". В конце каждого шага проводилось вычисление наибольшего расстояния, которое проходят атомы. Если достигалось определенное максимальное расстояние (D_{max}), то значение временно́го шага Δt делилось пополам и шаг повторялся. Если наибольшее смещение было меньше заданного минимального расстояния (D_{min}), то значение временного шага Δt увеличивалось в 2 раза и шаг также повторялся. Стандартные значения составляли $D_{\text{min}} = 0.02$ Å и $D_{\text{max}} = 0.06$ Å.

Еще одной особенностью авторадиационных процессов в минералах является то, что энергия атома отдачи рассеивается в объеме, значительно превышающем рассматриваемый фрагмент минерала. Поэтому для учета отвода тепла из этой области на границах фрагмента структуры поддерживалась температура $T_{\rm mod}$ в поверхностном слое толщиной 8 Å.

Межатомные потенциалы взаимодействия

Для воспроизведения свойств монацита были использованы два набора межатомных потенциалов. Параметры первого набора "Monazite 1" были заимствованы

	(заряды на а	Набор "М томах: $q(La) = 3.0 e_0, q$	onazite 1" $q(P) = 1.784 e_0, q(O) =$	$= -1.196 e_0)$		
Потенциал	Связь	A,eV	$ ho, { m \AA}$	$C, \mathrm{eV} \cdot \mathrm{\AA}^6$	R_{\max} , Å	
Потенциал Букингема	La–O O–O	1928.618 9070.693	0.332 131 0.263 291	0 0	10.0 10.0	
Потенциал	Связь	D, eV	$\sigma, \mathrm{\AA}^{-1}$	$r_0, \mathrm{\AA}$	R _{max} , Å	
Морзе	Р-О	3.0	2.83	1.57	10.0	
Набор "Monazite 2" (заряды на атомах: $q(La) = 1.60 e_0, q(P) = 3.2 e_0, q(O) = -1.196 e_0)$						
	Связь	A, eV	ho, Å	$C, \mathrm{eV} \cdot \mathrm{\AA}^6$	$R_{\rm max}$, Å	
Потенциал Букингема	La-O O-O P-O	11 076.219 1388.77 9034.21	0.269 773 0.351 668 0.192 64	270.216 175.0 19.88	10.0 10.0 10.0	

Таблица 1. Параметры наборов межатомных потенциалов, использованных при моделировании монацита LaPO4

Таблица 2. Сравнение экспериментальных и расчетных данных для двух потенциалов, использованных при моделировании монацита LaPO₄

Параметр	Эксперимент	"Monazite 1"	Δ, %	"Monazite 2"	Δ, %
a, Å	6.831	6.859	0.40	6.744	-1.28
<i>b</i> , Å	7.071	7.072	0.01	6.948	-1.73
<i>c</i> , Å	6.503	6.635	2.03	6.719	3.31
$eta,^\circ$	103.270	103.259	-0.01	103.924	0.63
K, GPa	99	137.23	38.62	111.87	13.00
G, GPa	53	67.17	26.74	50.31	-5.08
S_{298} , J/K · mol	108.7	94.24	-13.30	103.88	-4.44
C_{298} , J/K · mol	102.5	91.75	-10.49	95.94	-6.40

Таблица З. Сравнение постоянных упругости, полученных из первых принципов [19], и результатов расчета для двух потенциалов, использованых при моделировании монацита LaPO₄

Параметр	Ab inito	"Monazite 1"	Δ, %	"Monazite 2"	Δ, %
C_{11} , GPa	145	213.38	47.16	213.96	47.56
C_{22} , GPa	194	258.35	33.17	237.20	22.27
C_{33} , GPa	248	269.16	8.53	213.46	-13.93
C_{44} , GPa	48	61.88	28.91	46.66	-2.80
C_{66}, GPa	48	58.85	22.61	37.13	-22.64
C_{12} , GPa	63	79.48	26.16	57.26	-9.11
C_{13} , GPa	63	92.93	47.51	64.39	2.21

из работы [18], причем часть из них (отмеченная в табл. 1 курсивом) была оптимизирована с помощью программы GULP с использованием экспериментальных значений параметров элементарной ячейки, координат атомов и постоянных упругости. Структурные параметры для монацита взяты из [11], постоянные упругости, полученные из квантово-химических расчетов, — из [19], модуль сжатия и модуль сдвига (экспериментальные величины) — из [20], теплоемкость и энтропия — из [21].

Поскольку из эксперимента известно значение изобарной теплоемкости, а расчетные значения получены для изохорной теплоемкости, для сравнения теории и эксперимента учитывалась разность C_p и C_V по известному термодинамическому соотношению

$$C_p - C_V = \beta^2 T V_m / K_T, \qquad (3)$$

где β — температурный коэффициент объемного расширения (K⁻¹), V_m — молярный объем (m³/mol), K_T — изотермическая сжимаемость (Pa⁻¹). Значения β и K_T взяты из [22].

Разность $C_p - C_V$ составляет 0.15 J/K · mol при температуре 300 К.

Результаты вычислений показывают (табл. 2, 3), что этот набор межатомных потенциалов хорошо воспро-

Таблица 4. Параметры набора межатомных потенциалов Букингема, использованного при моделировании соединения YbPO₄ (заряды на атомах: $q(Yb) = 1.4 e_0$, $q(P) = 3.2 e_0$, $q(O) = -1.15 e_0$)

Связь	A, eV	$ ho, { m \AA}$	$C, \mathrm{eV} \cdot \mathrm{\AA}^6$	$R_{\rm max}$, Å
Yb-O	11 716.219	0.251 405	260.2168	10.0
O-O	1388.77	0.358 676	175.0	10.0
P-O	9034.208	0.192 64	19.88	10.0

Таблица 5. Сравнение экспериментальных и расчетных данных для потенциала, использованного при моделировании соединения YbPO₄

Параметр	Эксперимент	Расчет	$\Delta, \%$
a, Å	6.809	6.700	-1.599
$c, \mathrm{\AA}$	5.964	6.131	2.807
d(P-O), Å	1.53	1.52	-0.78
$d(Yb-O_1), Å$	2.27	2.23	-1.70
$d(Yb-O_2), A$	2.36	2.45	3.98
C_{11} , GPa	292.00	318.44	9.06
C_{33} , GPa	315.00	298.48	-5.24
C_{44} , GPa	87.00	70.87	-18.54
C_{66} , GPa	35.00	35.99	2.83
S_{298} , J/K · mol	99.74	96.72	-3.03
C_{298} , J/K · mol	100.00	94.91	-5.09

изводит структурные параметры, удовлетворительно упругие постоянные (кроме постоянной упругости C_{11}), но плохо — термодинамические свойства, модуль сжатия K и модуль сдвига G. В связи с этим был проведен поиск набора межатомных потенциалов, который лучше бы воспроизводил термодинамические и упругие характеристики монацита. Ввиду небольшого количества попыток моделирования структур фосфатов был опробован набор межатомных потенциалов, разработанный для алюмофосфатов [23].

Этот набор отличается от предыдущего тем, что параметры потенциалов были найдены с помощью квантовохимических расчетов малого фрагмента H_4AlO_4 ("из первых принципов"), тогда как предыдущие потенциалы были получены путем итерационного сближения расчетных и экспериментальных значений структурных и физических характеристик монацита при варьировании параметров потенциалов (табл. 1).

Результаты таких вычислений показывают (табл. 2, 3), что набор межатомных потенциалов "Monazite 2" хорошо воспроизводит структурные параметры и неплохо термодинамические и упругие свойства соединения.

Для воспроизведения свойств ортофосфата YbPO₄ со структурой циркона был использован набор межатомных потенциалов на основе потенциала "Monazite 2". Этот потенциал был оптимизирован с помощью программы GULP с использованием экспериментальных значений параметров элементарной ячейки, координат атомов и постоянных упругости (табл. 4). Результаты

показывают (табл. 5), что этот набор межатомных потенциалов хорошо воспроизводит структурные параметры и неплохо упругие постоянные и термодинамические свойства.

В качестве ядра отдачи для нанофрагментов ортофосфатов (около 5 млн атомов, размеры фрагмента структуры $400 \times 400 \times 400$ Å) использовался атом тория с энергией 30 keV. Энергии атомов отдачи были выбраны таким образом, чтобы каскад смещенных атомов находился в центральной части фрагмента структуры.

4. Результаты и их обсуждение

Движение первично выбитого атома приводит к его соударению с другими атомами системы. Эти атомы смещаются из положений равновесия, начинают движение и в свою очередь смещают другие атомы. Этот этап можно назвать баллистическим [8].

Для сравнения двух потенциалов ("Monazite 1" и "Monazite 2") была построена зависимость общего количества френкелевских пар (ФП): ФП атомов кислорода, фосфора и лантана — в структуре монацита от времени (рис. 1). Также на этом рисунке приведена зависимость усредненной энергии междоузельных атомов от времени. Горизонтальные стрелки на рисунке указывают на оси, к которым относятся кривые.

Результаты показывают, что баллистический этап наблюдается в интервале от 0 до 1 рs (рис. 1). После этого времени усредненная энергия междоузельных атомов становится сравнимой с энергией атомов в точке плавления $E_{melt} = (3/2)kT_{melt} \approx 0.3 \text{ eV}$ [24]. Это означает, что большинство смещенных атомов находится в "расплавленной зоне" монацита, но энергии этих атомов составляют менее 1 eV. Поэтому атомы с энергией выше средней не смещают отдельные атомы, а рассеивают свою энергию по всему каскаду смещений. Это приводит к смещению большого количества тетраэдров PO₄ в

1000 100 100 100 100 10 10^{3} 10^{3} 10^{3} 10^{3} 10^{3} 10^{3} 10^{3} 10^{2} 10^{2} 10^{2} 10^{2} 10^{2}

Рис. 1. Общее количество френкелевских пар в монаците для первого "Monazite 1" (кривая *I*) и второго "Monazite 2" (кривая *2*) наборов параметров потенциалов и усредненная энергия междоузельных атомов (кривая *3*) как функции времени.

Рис. 2. Фрагмент поврежденной области в монаците в плоскости (101) (потенциал "Monazite 2"). Время t = 1.3 ps (*a*) и 25 ps (*b*). Размеры фрагмента структуры составляют 80 × 80 Å.

Рис. 3. Общее количество френкелевских пар (кривая *1*) и усредненная энергия междоузельных атомов (кривая *2*) для соединения YbPO₄ со структурой циркона как функции времени.

структуре ортофосфатов, поскольку атомы в тетраэдрах связаны друг с другом значительно сильнее, чем с другими атомами.

На этом этапе ("тепловой этап") количество смещенных тетраэдров определяется термодинамическими характеристиками. Набор межатомных потенциалов "Monazite 1", который характеризуется заниженными значениями энтропии и теплоемкости (табл. 2), также характеризуется заниженными значениями теплопроводности. В этом случае отвод тепла из каскада смещений меньше, а максимальное количество смещенных атомов больше (рис. 1).

После формирования максимального количества ФП (рис. 1, 2) происходит первоначальная релаксация структуры, на протяжении которой большинство междоузельных атомов возвращается в положение равновесия. Полученные результаты показывают (рис. 1), что способность к восстановлению структуры значительно сильнее выражена у структуры, основанной на потенциале "Monazite 2". Подобным образом была построена зависимость общего количества ФП (ФП атомов кислорода, фосфора и иттербия) от времени для соединения YbPO₄ со структурой циркона (рис. 3).

Для более детального изучения процессов, которые происходят в каскаде смещенных атомов, были изучены различия в кинетике накопления и рекомбинации дефектов для двух минералов.

Из рис. 4 видно, что после 2.5 ps усредененная энергия междоузельных атомов для LaPO₄ становится выше, чем для соединения YbPO₄. Это согласуется с тем, что после 3 ps прослеживается обратная закономерность для количества междоузельных атомов: количество дефектов для LaPO₄ меньше, чем для YbPO₄.

Рассчитанная вероятность "выживания" ФП атомов кислорода (величина, обратная вероятности их реком-

Рис. 4. Общее количество френкелевских пар для LaPO₄ (кривая *1*) и YbPO₄ (кривая *2*) и усредненная энергия междоузельных атомов для этих соединений (кривые *3* и *4* соответственно) как функции времени.

Рис. 5. Зависимость относительного количества френкелевских пар атомов кислорода, остающихся в структуре в конце моделирования, от расстояния между вакансией и смещенным атомом для LaPO₄ и YbPO₄.

бинации) для изучаемых структур зависит от смещения атомов кислорода: с увеличением расстояния между вакансией и смещенным атомом (d_{V-I}) вероятность рекомбинации ФП понижается (рис. 5). Эти данные также показывают, что вероятность "выживания" ФП значительно ниже в структуре монацита LaPO₄, чем в соединении YbPO₄.

В работе [25] нами был предложен параметр α , который отражает склонность к аморфизации минералов под действием радиационного повреждения. Этот параметр характеризует часть энергии выбитого атома, которая расходуется на формирование ФП в каскаде смещенных атомов, и рассчитывается по формуле

$$\alpha = \frac{1}{E_{\text{PKA}}} (E_{\text{FP}}(Ln)N_f(Ln) + E_{\text{FP}}(\mathbf{P})N_f(\mathbf{P}) + E_{\text{FP}}(\mathbf{O})N_f(\mathbf{O})),$$
(4)

где $E_{\rm FP}(Ln)$, $E_{\rm FP}({\rm P})$, $E_{\rm FP}({\rm O})$ — энергии ФП атомов Ln, Р и O, $N_f(Ln)$, $N_f({\rm P})$, $N_f({\rm O})$ — количество ФП атомов Ln, Р и O в конце моделирования, $E_{\rm PKA}$ — энергия выбитого атома.

Расчеты показывают, что для монацита LaPO₄ параметр составляет 0.39, а для ортофосфата YbPO₄ — около единицы. Эти величины согласуются с экспериментальными данными: критическая температура аморфизации (температура, выше которой материал не переходит в аморфное состояние при облучении потоком тяжелых частиц) составляет 570 K для соединения YbPO₄ и 333 K для монацита LaPO₄ [10].

5. Заключение

Механизмы радиационных разрушений в структуре монацита LaPO₄ и соединении YbPO₄ со структурой циркона в результате альфа-распада под действием ядра отдачи исследованы с помощью компьютерного моделирования методом молекулярной динамики.

Для воспроизведения свойств монацита были использованы два набора межатомных потенциалов. Показано, что заниженные значения теплоемкости и энтропии в случае использования потенциала "Monazite 1" приводят к значительному накоплению дефектов в каскаде смещенных атомов и неверным результатам МД-моделирования. В случае использования потенциала "Monazite 2" результаты более реалистичны.

Для воспроизведения свойств ортофосфата со структурой циркона YbPO₄ был использован набор параметров межатомных потенциалов на основе потенциала для LaPO₄.

Вычислена кинетика накопления и рекомбинации френкелевских пар в каскаде смещенных атомов после прохождения в структуре монацита первично выбитого атома тория с энергией 30 keV.

На начальном этапе формирования каскада смещений (баллистический этап, t = 0-1 ps) движение первично выбитого атома приводит к его соударению с другими атомами системы. Эти атомы смещаются из положений

равновесия, начинают движение и в свою очередь смещают другие атомы.

После этого времени (начало "теплового этапа") энергия большинства междоузельных атомов составляет менее 1 eV. Такие атомы не смещают другие атомы, а рассеивают свою энергию по всему каскаду смещений. Это приводит к смещению большого количества тетраэдров PO₄ в структуре ортофосфатов, поскольку атомы в тетраэдрах связаны друг с другом значительно сильнее, чем с другими атомами.

После формирования каскада смещений начинается "восстановление" структуры: часть смещенных атомов возвращается в свои позиции или эквивалентные кристаллографические позиции. Вероятность "выживания" $\Phi \Pi$ увеличивается с расстоянием между вакансией и смещенным атомом d_{V-1} .

Результаты моделирования исследуемых структур показывают, что скорость уменьшения энергии междоузельных атомов E_{int} влияет на скорость рекомбинации дефектов (при более плавном уменьшении E_{int} скорость рекомбинации выше). В частности, после 3 рв усредненная энергия междоузельных атомов и скорость рекомбинации дефектов для LaPO₄ становится выше, чем в случае соединения YbPO₄.

Результаты моделирования также показывают, что вероятность "выживания" ФП значительно ниже в структуре монацита LaPO₄, чем в соединении YbPO₄: для расстояния $d_{V-I} = 1$ Å они различаются в 3 раза, а для расстояния 1.4 Åyже в 6 раз.

Введен параметр, который отражает склонность к аморфизации минералов под действием радиационного повреждения. Он характеризует часть энергии выбитого атома, которая расходуется на формирование ФП в каскаде смещенных атомов. Результаты показывают, что для монацита LaPO₄ этот параметр составляет 0.39, а для ортофосфата YbPO₄ — около единицы. Это согласуется с экспериментальными данными (критическая температура аморфизации T_c составляет 570 K для соединения YbPO₄ и 333 K для монацита LaPO₄).

Полученные результаты показывают, что одним из главных факторов, определяющих радиационную устойчивость ортофосфатов LnPO₄, является тип структуры. Соединения со структурой монацита являются более радиационно устойчивыми, чем соединения со структурой циркона. Более высокая радиационная устойчивость монацита LaPO₄ по сравнению с соединением YbPO₄, по-видимому, также связана с более длительной релаксацией структуры монацита.

Результаты данного исследования могут быть использованы при решении как фундаментальных, так и прикладных задач, связанных с изоляцией и захоронением высокоактивных радиоактивных отходов, в частности для оценки радиационной устойчивости ортофосфатных матриц, предложенных для утилизации отходов. С помощью проведенного компьютерного моделирования можно анализировать и прогнозировать поведение матриц при радиационных воздействиях. Полученные результаты способствуют экономии временны́х и финансовых ресурсов и в конечном счете выбору наиболее подходящей матрицы.

Список литературы

- [1] Nuclear power reactors in the World. Reference data series N 2. IAEA, Vienna (2010). P. 77.
- [2] R.C. Ewing, W. Lutze, W.J. Weber. J. Mater. Res. 10, 243 (1995).
- [3] B.C. Chakoumakos, T. Murakami, G.R. Lumpkin, R.C. Ewing. Science 236, 1556 (1987).
- [4] T. Murakami, B.C. Chakoumakos, R.C. Ewing, G.R. Lumpkin, W.J. Weber. Am. Mineral. 76, 1510 (1991).
- [5] W.J. Weber, R.C. Ewing, L.-M. Wang. J. Mater. Res. 9, 688 (1994).
- [6] A.P. Shpak, A.E. Grechanovsky, A.S. Lytovchenko, G.V. Legkova, S.Yu. Sayenko. J. Nucl. Mater. 347, 73 (2005).
- [7] R.C. Ewing, W.J. Weber, F.W. Clinard. Progr. Nucl. Energy 29, 63 (1995).
- [8] А.Е. Гречановский. Радиационная устойчивость природных и искусственных минеральных матриц для долговременной и экологически безопасной утилизации высокоактивных радиоактивных отходов. Логос, Киев (2012). 128 с.
 [9] М.Т. Р. Ц. К. С. 1 (1004)
- [9] M.T. Robinson. J. Nucl. Mater. 216, 1 (1994).
- [10] A. Meldrum, L.A. Boatner, R.C. Ewing. Phys. Rev. B 56, 13 805 (1997).
- [11] Y. Ni, J.M. Hughes, A.N. Mariano. Am. Mineral. 80, 21 (1995).
- [12] D.F. Mullica, E.L. Sappenfield, L.A. Boatner. Inorgan. Chim. Acta 174, 155 (1990).
- [13] D.F. Mullica, D.A. Grossie, L.A. Boatner. J. Solid State Chem. 58, 71 (1985).
- [14] A. Meldrum, S.J. Zinkle, L.A. Boatner, R.C. Ewing. Phys. Rev. B 59, 3981 (1999).
- [15] В.С. Урусов, Н.Н. Еремин. Атомистическое компьютерное моделирование структуры и свойств неорганических кристаллов и минералов, их дефектов и твердых растворов. ГЕОС, М. (2012). 448 с.
- [16] K. Trachenko, J.M. Pruneda, E. Artacho, M.T. Dove. Phys. Rev. B 71, 184 104 (2005).
- [17] I.T. Todorov, W. Smith. Phil. Trans. Royal Soc. A 362, 1835 (2004).
- [18] J.A.L. Rabone, N.H. de Leeuw. J. Comp. Chem. **27**, 253 (2006).
- [19] J. Wang, Y. Zhou, Z. Lin. Appl. Phys. Lett. 87, 051 902 (2005).
- [20] P.E.D. Morgan, D.B. Marshall. J. Am. Ceram. Soc. 78, 1553 (1995).
- [21] K.S. Gavrichev, M.A. Ryumin, A.V. Tyurin, V.M. Gurevich, L.N. Komissarova. Thermochim. Acta 474, 47 (2008).
- [22] P. Mogilevsky, E.B. Zaretsky, T.A. Parthasarathy, F. Meisenkothen. Phys. Chem. Miner. **33**, 691 (2006).
- [23] G.J. Kramer, N.P. Farragher, B.W.H. van Beest, R.A. van Santen. Phys. Rev. B 43, 5068 (1991).
- [24] Y. Hikichi, T. Nomura. J. Am. Ceram. Soc. 70, 252 (1987).
- [25] В.С. Урусов, А.Е. Гречановский, Н.Н. Еремин. Геология руд. месторождений **54**, 472 (2012).