05.4 Замедление магнитной релаксации в левитирующих сверхпроводниках

© Б.М. Смоляк, Г.Н. Перельштейн, Г.В. Ермаков

Институт теплофизики УрО РАН, Екатеринбург E-mail: b-smolyak@yandex.ru

Поступило в Редакцию 2 августа 2005 г.

Обнаружен эффект уменьшения скорости магнитной релаксации в левитирующих сверхпроводниках. Предполагается, что замедление релаксации намагниченности обусловлено обратной связью — подмагничиванием образца, которое восстанавливает неравновесную магнитную структуру, разрушаемую крипом.

PACS: 74.25.Ha

Крип магнитного потока, или магнитная релаксация, разрушает сверхтоки, поэтому в сверхпроводниковых системах левитации сила подвеса должна уменьшаться. Результаты экспериментального исследования этого явления неоднозначны. Прямое измерение силы взаимодействия между магнитом и высокотемпературным сверхпроводником (ВТСП) показывает заметное снижение силы со временем [1–3]. Однако при наблюдении дрейфа левитирующих ВТСП образцов [4,5] изменений высоты левитации в стационарном магнитном поле не обнаружено, т. е. сила, удерживающая образец на уровне подвеса, не изменялась. Авторы [5] полагали, что отсутствие дрейфа связано с малостью термических флуктуаций. Однако плотность транспортного тока в образцах [4,5] была на порядок меньше, чем в [1–3], т.е. пиннинговый барьер был ниже при том же уровне тепловых флуктуаций.

Противоречивость опытов, касающихся по сути одного и того же явления, по-видимому, не случайна. Мы полагаем, что при левитации, когда сверхпроводник (магнит) опирается на магнитное поле, затухание сверхтоков идет медленнее, чем в случае фиксированного положения сверхпроводника и магнита. В [1–3] подвижность объекта левитации была ограничена, так как для измерения силы необходим контакт с телом, на которое действует сила. Поэтому результаты этих работ вполне согласуются с сильной магнитной релаксацией в

8

Рис. 1. Схемы измерения магнитной силы: *1* — ВТСП-образец, *2* — магнит, *3* — подвеска, *4* — магнитная головка, *5* — катушка, *6* — упор, *7* — механотрон, *8* — пружинка.

ВТСП, которая наблюдается на "фиксированных" образцах [6]. При естественной левитации [4,5] магнитная релаксация и крип силы замедляются. Результаты исследования этого эффекта приведены в нашем сообщении.

В опытах использовался дисковый образец из плавленой YBaCuO керамики (диаметр диска 10 mm, высота 3.5 mm) и кольцевой SmCo магнит с размерами $30 \times 18 \times 8 \text{ mm}$. Система магнит—сверхпроводник имела азимутальную симметрию относительно вертикальной оси *z*. Силу левитации (подвеса) создавали следующим образом. Магнит

устанавливали в начальное положение (показано пунктиром на рис. 1), охлаждали образец до 78 К и намагничивали, перемещая магнит вверх на некоторое расстояние и затем фиксируя положение магнита. В результате сверхпроводник приобретал однополярную намагниченность и на образец, находящийся под магнитом или над магнитом, действовала сила F, направленная против силы тяжести. Подвеска — ВТСП образец с грузом — имела вес G, превышающий силу F, которую измеряли, уравновешивая разность сил G-F электромагнитной силой P_e (рис. 1, *a*) или механической P_m (рис. 1, *b*, *c*). При измерении зависимости F(t) по схеме (a) подвеска основное время находилась на упоре ($P_e = 0$), т.е. положение намагниченного образца относительно магнита не менялось в процессе магнитной релаксации. Силу F измеряли через определенные промежутки времени, подавая ток в катушку и фиксируя величину тока (определяющего величину P_e) в момент отрыва подвески от упора. Затем ток выключали, и подвеска стояла на упоре до следующего измерения. В схемах измерения (b) и (с) использовался механотрон — электронная лампа с подвижным анодом. Разность сил G-F прикладывалась к чувствительному элементу лампы — стержню, впаянному в мембрану, при изгибе которой создается уравновешивающая сила P_m. Если F уменьшалась вследствие релаксации намагниченности, то конец стержня опускался вместе с подвеской и Р_m возрастала. При этом намагниченность образца могла изменяться также в результате перемещений подвески, величина которых зависела от связей, наложенных на подвеску. В схеме (b) перемещения ограничивала мембрана механотрона, жесткость которой была на порядок больше магнитной жесткости. В схеме (c) жесткость последовательно соединенных упругих элементов (мембраны и пружинки) была меньше магнитной.

На рис. 2 приведены зависимости $F(\ln t)$, нормированные на величину начальной силы F_0 , которая измерялась спустя время $t_0 = 10$ min после намагничивания ВТСП образца. Зависимости близки к линейным, и их наклон характеризует скорость логарифмической релаксации $S = (dF/d \ln t)/F_0$. Скорость максимальна, когда образец закреплен (зависимость 1). При "смягчении" механической связи релаксация замедляется. Эффект выражен тем сильнее, чем ближе система подвеса к "истинной" левитации, при которой перемещения образца в основном определяет магнитная связь.

Рис. 2. Релаксация магнитной силы: I — образец в процессе крипа не перемещается (схема рис. 1, *a*), 2 — малые перемещения (*b*), 3 и 4 — "плавающая" подвеска (*c*): образец под магнитом и над магнитом.

Рассмотрим релаксацию магнитной силы в случае, когда на подвеску со сверхпроводником наложена также механическая связь. Силу, действующую на сверхпроводящий диск, можно записать в виде [3]

$$F = M \cdot \Phi_r, \tag{1}$$

где M — намагниченность диска по оси z, Φ_r — радиальный магнитный поток, выходящий через боковую поверхность диска, или градиентная функция поля, определяющая средний градиент $\langle dB_z/dz \rangle$ в области, занимаемой диском. Для определенности рассмотрим подвес сверхпроводника над магнитом, при котором образец намагничивают, приближая магнит снизу. Будем полагать, что критическое состояние проникает в диск с боковой поверхности и азимутальный ток течет по всему объему диска с одинаковой плотностью $J = (dB_z/dr)/\mu_0$, где B_z — аксиальная компонента индукции, μ_0 — магнитная постоянная. Намагниченность диска радиусом R, $M = \frac{1}{3}JR$. Если механическая связь абсолютно жесткая, то сверхток уменьшается со временем с коэффициентом

релаксации

$$\alpha(t) = J(t > t_0) / J(t_0) = 1 - \frac{kT}{U_0} \ln \frac{t}{t_0},$$
(2)

где U_0 — эффективная энергия активации. Намагниченность и сила (1) имеют тот же коэффициент релаксации $M(t)/M_0 = F(t)/F_0 = \alpha(t)$ и убывают со скоростью $S = kT/U_0$. Если связь упругая, то релаксация тока и снижение F вызовет смещение подвески к магниту. Поле на границе сверхпроводника возрастает, что приводит к образованию "свежего" критического состояния с более высокой плотностью криттока. Градиент индукции, разрушаемый крипом, восстанавливается за счет подмагничивания.

На вставке (рис. 2) показаны распределения индукции: 1 — начальное $(t = t_0)$; $2 - t > t_0$ (образец закреплен); 3 — тот же момент времени $t > t_0$, но образец может перемещаться в процессе крипа. Критическое состояние 3 проникает на глубину $\delta = R - r^*$. Будем полагать, что в этой области градиент dB_z/dr восстанавливается до начального значения $\mu_0 J_0$ и, следовательно, релаксирует только магнитная структура на участке $r < r^*$, где плотность тока $J(t > t_0) = J_0 \alpha(t)$. Намагниченность диска M^* складывается из двух составляющих: $M' = M_0 \alpha(t) (r^*/R)^3$ для участка $0 \le r < r^*$ и $M'' = M_0 [1 - (r^*/R)^3]$ для участка $r^* \le r \le R$. Коэффициент релаксации

$$\alpha^*(t) = M^*(t > t_0) / M_0 = 1 - q \, \frac{kT}{U_0} \ln \frac{t}{t_0},\tag{3}$$

где $M_0 = \frac{1}{3}J_0R$, $q = [(1-\delta)/R]^3$. Приняв, что функция Φ_r в (1) слабо меняется при смещении образца, имеем $F^*(t > t_0)/F_0 = \alpha^*(t)$. Скорость логарифмической релаксации $S^* = qkT/U_0$. В зависимости от жесткости механической связи множитель q может принимать значения от единицы (релаксация в неподвижном сверхпроводнике) до нуля (отсутствие релаксации). Используя (2), (3) и соотношения $\delta = \Delta B_z/\mu_0 R(1-\alpha(t))$, $\Delta B_z = K_B \Delta z$, $\Delta z = \Delta P_m/k_m$, $\Delta P_m = \Delta F = F_0(1-\alpha^*(t))$ (где Δz — смещение подвески, ΔB_z — изменение поля на границе r = R, $K_B = dB_z/dz$ — градиент поля на границе, ΔF и ΔP_m — изменение магнитной силы и упругой механической силы, k_m — жесткость механической связи), можно оценить q из уравнения $Cq + q^{1/3} - 1 = 0$, где $C = F_0 K_B/\mu_0 R_J o_k_m$. Используя данные $F_0 = 0.37$ N, $K_B = 35$ T/m, $J_0 = 2.7 \cdot 10^7$ A/m², $R = 5 \cdot 10^{-3}$ m, жесткость k_m в схемах рис. 1, a, b,

c равна соответственно ∞ , 500 N/m и 15 N/m, получим расчетное q = 1(cxema (a)), 0.717 (b) и 0.1 (c). Из опыта значения q найдем с помощью зависимостей 1-4 (рис. 2). Наклон зависимости 1 определяет скорость S логарифмической релаксации в отсутствие перемещений образца, т.е. множитель q = 1. Это позволяет найти нормированную энергию активации $U_0/kT = 1/S \simeq 28.5$, что близко к известным значениям ~ 30 для плавленой текстурированной керамики YBaCuO. Зависимости 2-4 показывают замедленную релаксацию со скоростью $S^* = qkT/U_0$, откуда находим q = 0.724 для зависимости 2 (измерена по схеме рис. 1, b), 0.31 для 3 (c) и 0.074 для 4 (c). Качественное совпадение опытных и расчетных данных для q вполне приемлемо. Магнитная релаксация замедляется, когда система подвеса приближается к "истинной" левитации. При этом скорость релаксации S* разная для подвеса под магнитом (зависимость 3) и над магнитом (4), что связано, вероятно, с разной величиной магнитной жесткости dF/dz, которая определяет смещения образца при малых k_m.

Список литературы

- [1] Moon F.C., Chang P.Z., Hojaji H. et al. // Japn. J. Appl. Phys. 1990. V. 29. P. 1257–1258.
- [2] Riise A.B., Johansen T.H., Bratsberg H., Yang Z.J. // Appl. Phys. Lett. 1992.
 V. 60. P. 2294–2296.
- [3] Smolyak B.M., Perelshtein G.N., Ermakov G.V. // Cryogenics. 2002. V. 42. P. 635–644.
- [4] Краснюк Н.Н., Митрофанов М.П. // Сверхпроводимость: физика, химия, техника. 1990. Т. З. № 2. Р. 318–323.
- [5] Terentiev A.N., Kuznetsov A.A. // Physica C. 1992. V. 195. P. 41-46.
- [6] Yeshurun Y, Molozemoff A.P., Shaulov // Rev. Mod. Phys. 1996. V. 68. P. 911– 949.