06.2 Изменение параметров ветвей термоэлементов на основе халькогенидов висмута и сурьмы при интеркаляции подвижной меди

© М.А. Коржуев, Л.Д. Иванова

Институт металлургии и материаловедения им. А.А. Байкова (ИМЕТ) PAH, Москва E-mail: korzhuev@ultra.imet.ac.ru; ivanova@ultra.imet.ac.ru

Поступило в Редакцию 19 сентября 2005 г.

Эффект конверсии типа проводимости $(p \rightarrow n)$, наблюдавшийся ранее при интеркаляции подвижной меди в слоистые кристаллы на основе халькогенидов Ві и Sb, использован для создания термоэлектрического модуля из исходных кристаллов *p*-типа проводимости. Необходимые ветви *n*-типа проводимости получали уже после сборки модуля путем насыщения материала медью методом автоэлектрохимического легирования (АЭХЛ). Рассмотрены возможности метода АЭХЛ для оптимизации характеристик *n*- и *p*-ветвей модулей путем введения неболыших количеств подвижной меди в материал.

PACS: 84.60.Rb

Введение. Кристаллическую структуру узкозонного полупроводникового соединения — теллурида висмута Bi₂Te₃ ($E_g = 0.13 \text{ eV}$ при 300 K), принадлежащего к ромбоэдрической сингонии (пространственная группа симметрии R3m), можно представить в виде набора пятислойных слоев — квинтетов ($-\text{Te}^{(1)}-\text{Bi}-\text{Te}^{(2)}-\text{Bi}-\text{Te}^{(1)}-$), чередующихся вдоль тригональной оси [1]. Слоистые кристаллы типа Bi₂Te₃ имеют анизотропию физических свойств, низкую решеточную теплопроводность κ_p , высокую термоэлектрическую добротность Z до ~ $3 \cdot 10^{-3} \text{ K}^{-1}$, легко скалываются по плоскостям спайности (0001), между слоями могут быть интеркалированы быстро диффундирующие примеси-доноры (M = Cu, Ag, Au, Li и др.) [1–3].

В качестве материалов *p*-типа в термоэлементах обычно используют сплавы на основе Bi_2Te_3 -Sb₂Te₃, в качестве материалов *n*-типа — сплавы на основе Bi_2Te_3 -Bi₂Se₃ [1]. Ранее при введении $\sim 0.5 \cdot 10^{19} \,\mathrm{cm}^{-3}$

79

меди в образцы p-Bi₂Te₃ наблюдали конверсию типа электронной проводимости образцов $(p \rightarrow n)$ [2]. Целью настоящей работы было использовать эффект конверсии для создания термоэлектрического модуля из исходных кристаллов p-типа. Необходимые ветви n-типа получали уже после сборки модуля путем насыщения материала медью методом автоэлектрохимического легирования (АЭХЛ) [2,3].

Эксперимент. Для эксперимента были использованы монокристаллы p-(Bi_{0.5}Sb_{1.5}Te₃)_{0.96}+(Bi₂Se₃)_{0.04} ($Z_{\rm max} \sim 2.9 \cdot 10^{-3} \, {\rm K}^{-1}$ при 300 К) [4]. Из материала был изготовлен термоэлектрический модуль, состоящий из двух *p*-ветвей (1.7 × 2.0 × 6.0 mm), токоподводящих шин (медь, луженая оловом), теплоперехода (ВеО) и медной нелуженой коммутирующей пластины. Модуль опускали в медьпроводящий электролит (aq. CuSO₄), так чтобы электролит покрывал только легируемую ветвь и часть коммутирующей пластины. Легирование материала происходило путем переноса меди от коммутирующей пластины к образцу под действием э.д.с. Е короткозамкнутой электрохимической ячейки Cu/aq. CuSO₄/X (здесь X — легируемый материал). Насыщение образцов медью происходило исключительно быстро в результате суперионной проводимости меди в материале (коэффициент диффузии меди $\sim 10^{-4} \,\mathrm{cm^2/s}$ при $T = 300 \,\mathrm{K}$) [3] и заканчивалось по достижении состояния предельно насыщенного медью твердого раствора (E = 0) [2]. На различных стадиях процесса АЭХЛ методом микрозонда исследовали распределение термо-э.д.с. α по длине ветвей, термоэлектрическую добротность Z модуля измеряли методом Хармана. Определение эффекта охлаждения (ΔT) производили в вакуумированном криостате в интервале температур 100-300 К.

Экспериментальные результаты и их обсуждение. На рис. 1 привелены зависимости термо-э.д.с. $\bar{\alpha}_{300 \text{ K}}$ легируемой ветви ((Bi_{0.5}Sb_{1.5}Te₃)_{0.96}+(Bi₂Se₃)_{0.04})(Си) (1) и термоэлектрической добротности модуля Z_{300 K} (2) от времени АЭХЛ. Из рис. 1 видно, что в процессе АЭХЛ величина термо-э.д.с. $\alpha_{300\,\mathrm{K}}$ материала испытывала конверсию (кривая 1), при этом величина термоэлектрической добротности модуля Z, достигая значений $Z_{max} \sim 2.8 - 2.9 \cdot 10^{-3} \, {\rm K}^{-1}$ для состояний, близких к предельному насыщению образцов медью (кривая 2). Кинетика процессов АЭХЛ для образцов $((Bi_{0.5}Sb_{1.5}Te_3)_{0.96}+(Bi_2Se_3)_{0.04})\langle Cu\rangle$ при этом существенно не отличалась для свободной ветви и ветви в составе модуля (точки 3 и 4), равно как и от образцов (Bi₂Te₃)(Cu) такого же размера (точки 3, 4 и 5) [2,3].

Письма в ЖТФ, 2006, том 32, вып. 2

Рис. 1. Зависимость теормо-э.д.с. $\bar{\alpha}_{300 \text{ K}}$ ветви (($\text{Bi}_{0.5}\text{Sb}_{1.5}\text{Te}_3$)_{0.96}+(Bi_2Se_3)_{0.04}) $\langle Cu \rangle$ (1) и термоэлектрической добротности модуля $Z_{300 \text{ K}}$ (2) от времени АЭХЛ (3 — свободная ветвь; 4 — ветвь в составе модуля; 5 — ветвь сравнения из Bi₂Te₃ [2]).

В интервале $T = 100 - 300 \, \text{K}$ был исследован перепад температур ΔT , даваемый модулем с ветвями *p*-((Bi_{0.5}Sb_{1.5}Te₃)_{0.96}+(Bi₂Se₃)_{0.04}) и $n-((Bi_{0.5}Sb_{1.5}Te_3)_{0.96}+(Bi_2Se_3)_{0.04})(Cu)$, предельно насыщенной медью при комнатной температуре (кривая 4, рис. 2). Величина оптимального рабочего тока модуля составляла $I_0 = 2.1 - 2.7$ А. Для сравнения на рис. 2 приведены также данные, полученные нами для стандартного модуля, собранного из ветвей *n*- и *p*-типа (см. таблицу). Величину термоэлектрической добротности модулей (рис. 2) рассчитывали по экспериментальным значениям ΔT из соотношения $\Delta T = ZT_c^2/2$ [1] (кривые 1 и 2) либо по температурным зависимостям свойств — термоэ.д.с. α , электрической проводимости σ и теплопроводности κ [4] из соотношения $Z = \alpha^2 \sigma / \kappa$ (точки \triangle и \square) [1].

Из рис. 2 видно, что полученный модуль имеет достаточно высокие термоэлектрические характеристики, близкие к характеристикам модуля сравнения: $\Delta T = 69.6 \,\mathrm{K}$ при температуре горячего спая $T_0 = 297 \,\mathrm{K}$

6 Письма в ЖТФ, 2006, том 32, вып. 2

Рис. 2. Термоэлектрическая добротность Z(1,2) и перепады температур $\Delta T(3,4)$, даваемые модулем сравнения (см. таблицу) (1,3) и исследованным в работе модулем (рис. 1) (2,4). Точки \triangle и \Box у кривых I и 2 — расчет Z исходя из температурных зависимостей α , σ и κ .

и максимум $Z_{\rm max} \sim 2.9 \cdot 10^{-3} \, {\rm K}^{-1}$, несколько смещенный в сторону низких температур из-за бо́льшей величины α (кривые *1–4*, рис. 4, табл. работы [4]).

Характеристики материалов ветвей исследованного модуля и модуля сравнения ($T = 300 \, {\rm K}$)

Модуль	Материал	α, μV/K	σ, Cm/cm	$\kappa 10^3$, W/(cm·K)	Z 10 ³ , 1/K
Исследо- ванный в работе	$n-((Bi_{0.5}Sb_{1.5}Te_3)_{0.96}+(Bi_2Se_3)_{0.04})\langle Cu\rangle p-((Bi_{0.5}Sb_{1.5}Te_3)_{0.96}+(Bi_2Se_3)_{0.04})$	-208 220	~ 700 715	~ 11.0 11.0	~ 2.8 3.1
Сравне- ния	n-Bi ₂ Te ₃ -Bi ₂ Se ₃ p-Bi ₂ Te ₃ -Sb ₂ Te ₃	-186 188	1504 1261	17.5 17.2	2.97 2.59

Письма в ЖТФ, 2006, том 32, вып. 2

Заключение. Таким образом, в настоящей работе показано, что термоэлектрический модуль на основе слоистых кристаллов типа Bi₂Te₃ может быть собран исходя только из материалов р-типа проводимости. Необходимые ветви п-типа проводимости получали уже после сборки модуля путем насыщения материала медью, приводящей к конверсии типа электронной проводимости образцов $(p \rightarrow n)$. Насыщение производили путем автоэлектрохимического легирования (АЭХЛ) [2], которое представляет собой саморегулирующийся электрохимический процесс, позволяющий получать предельно насыщенные медью твердые растворы на основе слоистых кристаллов типа Bi2Te3. Полученный таким образом термоэлектрический модуль имел высокие характеристики, близкие к термоэлектрическим характеристикам модулей, собранных из лучших материалов *p*- и *n*-типа проводимости [4]. Описанная методика АЭХЛ позволяет также производить оптимизацию характеристик модулей в процессе их разработки и корректировку характеристик уже собранных модулей с целью увеличения их термоэлектрической эффективности.

Список литературы

- [1] Гольцман Б.М., Кудинов В.А., Смирнов И.А. Полупроводниковые термоэлектрические материалы на основе Bi₂Te₃. М.: Наука, 1972. 320 с.
- [2] Коржуев М.А., Свечникова Т.Е., Чижевская С.Н. // Физика и химия обработки матер. 1992. № 1. С. 132–138.
- [3] Коржуев М.А., Свечникова Т.Е. // ФТП. 1991. Т. 25. В. 12. С. 2141–2149.
- [4] Иванова Л.Д., Гранаткина Ю.В., Поликарпова Н.В., Смирнова Е.И. // Неорганические материалы. 1997. Т. 33. В. 6. С. 669–673.

6* Письма в ЖТФ, 2006, том 32, вып. 2