05 Размерный эффект контактного плавления металлов

© П.К. Коротков, Т.А. Орквасов, В.А. Созаев

Кабардино-Балкарский государственный университет, Нальчик Северо-Кавказский горно-металлургический институт (ГТУ), Владикавказ E-mail: sozaevv@kbsu.ru

Поступило в Редакцию 16 июня 2005 г.

В рамках термодинамики поверхностных явлений, с учетом известных размерных зависимостей поверхностной энергии получены соотношения, описывающие размерный эффект температуры контактного плавления $T_1(r)$. Оценка $T_1(r)$ проводится на примере тонкопленочной системы Sn-Bi. Полученные данные сопоставляются с известными литературными данными.

PACS: 44.10.+i, 61.82.Bg

Знание закономерностей контактного плавления в тонких пленках и порошковых системах имеет большое значение для оптимизации технологии контактно-реактивной пайки, жидкофазного спекания, металлизации керамик.

Первые данные о контактном плавлении (КП) в тонкопленочных и дисперсных системах описаны в работах [1–3]. В работе [4] с использованием двухкомпонентных пленок переменного состава и переменного состояния, полученных испарением компонентов из отдельных источников, получена диаграмма состояния системы олово-висмут. Показано, что при переходе к тонким пленкам толщиной менее 50 nm наблюдается смещение диаграммы состояния в сторону более низких температур. В частности, для пленок висмут-олово толщиной 32, 20 и 10 nm наблюдается понижение эвтектической температуры на 5, 10 и 18 K соответственно. Это указывает на то, что и температура КП в тонкопленочных системах Sn-Bi также должна понижаться с уменьшением толщины пленок соответственно. В работе [5], измеряя температуру КП по скачку электросопротивления в тонкопленочной системе висмут–индий и индий–висмут, напыленных на кремниевые подложки (толщина пленок $\sim 1000 \text{ Å}$) на установке УВН-70, обнаружили, что

28

температура КП (T_1) на 2–3 градуса меньше, чем T_1 у массивных образцов.

Теоретический анализ размерного эффекта T_1 проводился в работе [6] в рамках термодинамики поверхностных явлений в приближении регулярных растворов, где из условия равновесия между кристаллической крупинкой радиуса r, представляющей собой твердых раствор A в B, и их расплавом с учетом поверхностного давления для T_1 в работе [6] получено уравнение

$$T_1(r) = T_1(\infty) \exp\left[-\frac{A}{r}\left(1 - \frac{1}{x}\right)\right],\tag{1}$$

где $A = 2\sigma(\infty)\Omega_A/g_A$, g_A — теплота плавления, Ω_A — атомный объем, $\sigma(\infty)$ — межфазная энергия растворов, граничащих по плоской границе раздела, $T_1(\infty)$ — температура КП в массивных образцах, $x = r/\delta$, δ — постоянная Толмена. При выводе (1) учитывалась размерная зависимость межфазной энергии

$$\sigma(r) \approx \sigma_{\infty}(1 - 2/x). \tag{2}$$

Однако существуют и другие размерные зависимости межфазной энергии (см. таблицу).

В настоящей работе анализируется влияние выбора размерной зависимости поверхностной энергии на размерную зависимость T_1 при тех же условиях, что и в работе [6]. В таблице приводятся соотношения $T_1(r)$, полученные с использованием наиболее часто встречающихся размерных зависимостей поверхностной энергии (натяжения) [9–12].

Количественная оценка размерной зависимости T_1 по формулам, приведенным в таблице, затруднительна, потому что параметры A и δ не всегда являются постоянными в широком интервале размеров микрои нанообъектов, так как атомный объем Ω_A и теплота плавления g_A , входящие в A, могут оказаться размернозависимыми, как, например, и плотность вещества [13]. Поэтому использовались эмпирические коэффициенты A и δ , рассчитанные нами по экспериментально обнаруженной размерной зависимости $T_1(r)$ в тонкопленочной системе Sn-Bi [4]. Параметр A рассчитывается с использованием экспериментальных данных [4] по $T_1(r)$. Записывая уравнение (1) или аналогичное из таблицы для двух различных размеров r_1 и r_2 и соответственно взяв экспериментальные данные $T_1(r_1)$ и $T_1(r_2)$, а затем решая систему

N⁰	$\sigma(r)/\sigma(\infty)$	x	Автор	$T_1(r)/T_1(\infty)$	Автор
1	1/(1+2/x)	$\frac{r}{\delta}$	Р. Толмен [8]	$\exp\left[-rac{A}{(r+2\delta)}\left(1+rac{\delta}{r+2\delta} ight) ight]$	Наст. работа
2	1 - 2/x	$\frac{r}{\delta}$	В. Фогельсбергер [7]	$\exp\left[-\frac{A}{r}\left(1-\frac{1}{x}\right)\right]$	[6]
3	$1 - 2/x + 2/x^2$	$\frac{r}{\delta}$	Л. Щербаков [9]	$\exp\left[-\frac{A}{r}\left(1-\frac{1}{x}\right)\right]$	[6]
4	$(1-1/x)^2$	$\frac{r}{\delta}$	Д. Рассмусен [11]	$\exp\left[-\frac{A}{r}\left(1-\frac{1}{x}\right)\right]$	[6]
5	$1 - 2/x + 2/x^2 (1 - \exp(-x))$	$\frac{r}{\delta}$	В. Ноннемахер [10]	$\exp\left[-\frac{A}{r}\left(1-\frac{1}{x}\left\{\frac{e^{-x}}{(1-e^{-x})^2}+1\right\}\right)\right]$	Наст. работа
6	$1/(1+1/x)^2$	$\frac{r}{\varepsilon_0}$	В. Кузнецов [12]	$\exp\left[-\frac{A}{r(1+1/x)^2}\left(1+\frac{1}{1+x}\right)\right]$	» »

Размерная зависимость температуры контактного плавления

 δ — постоянная Толмена, ε_0 — толщина поверхностного слоя для плоской границы, $A=2\sigma(\infty)\Omega_A/g_A.$

Зависимости температуры контактного плавления от толщины пленки, полученные с учетом размерного эффекта поверхностного натяжения: *I* — [7], [9], [11]; *2* — [10]; *3* — [8]; *4* — [12], кружками отмечены данные эксперимента [4].

двух уравнений, можно оценить *A*. Используя эти данные, можно вычислить $T_1(r)/T_1(\infty)$ и для других размеров *r*. Они оказались равными A = 1.588 nm, $\delta = 1.334$ nm.

Полученные значения A и δ подставлялись в формулы, приведенные в таблице, для оценки размерной зависимости $T_1(r)$, которая приводится на рисунке. Из рисунка видно, что если использовать размерную зависимость поверхностного натяжения, полученную Р. Толменом, то T_1 при уменьшении размера нанообъекта стремится к нулю. Все другие размерные зависимости поверхностного натяжения, приведенные в таблице, приводят к размерной зависимости $T_1(r)$, проходящей через минимум. Причем точка перегиба наблюдается при $r = \delta$ (для соотношения Кузнецова $r^* \approx \varepsilon_0 = 1.372$ nm).

Следует отметить, что при размерах наночастиц, соизмеримых с толщиной поверхностного слоя, возникает проблема обоснования соотношений, приведенных в таблице, так как в этом случае прояв-

ляются ограничения термодинамического континуального подхода [14], связанные, в частности, с невозможностью выделить поверхностный слой в наночастицах с размером $r < \delta$ [15].

Приведенные в таблице соотношения по размерной зависимости температуры контактного плавления могут быть использованы в технологиях микро- и наноэлектроники.

Список литературы

- [1] Савинцев П.А. // Изв. Томского политехн. ин-та. 1951. Т. 68. В. 1. С. 190–194.
- [2] Палатник Л.С., Косевич В.М., Литвиненко Ю.Т. // ФММ. 1963. Т. 15. В. 3. С. 371–378.
- [3] Палатник Л.С., Комник Ю.Ф. // ФММ. 1960. Т. 9. № 3. С. 374–378.
- [4] Гладких Н.Т., Чижик С.П., Ларин В.И., Григорьева Л.К., Сухов В.Н. // ДАН СССР. 1985. Т. 280. № 4. С. 858–860.
- [5] Гетажеев К.А., Динаев Ю.А., Орквасов Т.А., Шидов Х.Т. // Вестник КБГУ. Сер. Физические науки. Нальчик: КБГУ, 1999. В. З. С. 16–19.
- [6] Савинцев П.А., Шебзухов А.А., Диденко Н.Я., Афаунов М.Х. // Электронная техника. 1970. Вып. 3 (35). Сер. 10. С. 71–77.
- [7] Vogelsberger W. // Chem. Phys. Lett. 1980. V. 74. N 1. P. 143-146.
- [8] Tolman R.C. // J. Chem. Phys. 1949. V. 17. N 2. P. 333-340.
- [9] Щербаков Л.М. // Коллоидный журнал. 1952. Т. 14. № 5. С. 379.
- [10] Nonnenmucher W. // Chem. Phys. Lett. 1977. V. 47. N 3. P. 507.
- [11] Rasmussen D.H. // J. Cryst. Growth. 1982. V. 56. N 1. P. 45-55.
- [12] Кузнецов В.А. Зависимость поверхностного натяжения от кривизны поверхности малых капель / Препринт Отд. ин-та хим. физики АН СССР. Коллоидный журнал. 1988. № 12.
- [13] Белов А.Н., Гаврилов С.А., Громов Д.Г., Малкова А.С., Кравченко Д.А., Тихомиров А.А. // Изв. вузов. Электроника. 2004. № 4. С. 3–8.
- [14] Полухин В.А. Моделирование наноструктуры и прекурсорных состояний. Екатеринбург: УрОРАН, 2004. 207 с.
- [15] Самсонов В.М. // ЖФХ. 2002. Т. 76. № 11. С. 2047–2051.