от Полимерный материал для фазовой оптической записи с диффузионным усилением

© Ю.В. Грицай, В.В. Могильный

Белорусский государственный университет, Минск E-mail: mogilny@bsu.by

Поступило в Редакцию 11 июля 2005 г.

Предложен фазовый фоторегистрирующий голографический материал на основе ксантона в полиметилметакрилате для ближней УФ-области с пост-экспозиционным усилением. Показана основная роль диффузии в процессе усиления. Достигнуты амплитуда модуляции показателя преломления $4 \cdot 10^{-3}$ и коэффициент усиления по этой величине не менее 30. Показана стабильность фазовых решеток при повышенных температурах, а также их сохранение после однородного экспонирования.

PACS: 61.82.Pv, 42.70.Ln

Полимерные фазовые голографические материалы, содержащие фенантренхинон (ФХ), известны достаточно давно и уже перешли в разряд "классических" голографических сред [1]. Фотоприсоединение продуктов ФХ к макромолекулам полимерной основы вызывает диффузию непрореагировавших молекул ФХ, следствием которой является существенное постэкспозиционное усиление записанных фазовых голограмм. Данный механизм обеспечивает значительные коэффициент усиления, конечную амплитуду модуляции показателя преломления Δn и, следовательно, высокую дифракционную эффективность усиленных фазовых голографических решеток. Область спектральной чувствительности материалов с ФХ лежит в диапазоне 350-600 nm (реально для слоев толщиной около сотни $\mu m - 450-550 nm$). Важной с практической точки зрения задачей представляется поиск новых материалов с диффузионным усилением указанного типа для других спектральных диапазонов и повышение коэффициента усиления. В настоящей работе мы рассматриваем новый материал для фазовой оптической записи с эффективным усилением диффузионного типа, область чувствительности которого лежит в ближнем УФ-диапазоне.

20

Диффузионное усиление, вызываемое псевдомономолекулярной реакцией фотоприсоединения схематически можно представить следующим образом. При записи создается синфазное световому полю синусоидальное распределение присоединенного к матрице фотопродукта с амплитудой модуляции концентрации Δc_p и противофазное распределение непрореагировавшего светочувствительного вещества. Если считать, что весь фотопродукт присоединяется к макромолекулам полимерной матрицы, то в результате диффузии исходного светочувствительного вещества в слое восстановится его однородное распределение при сохранении модуляции Δc_p [1]. Величину Δn с точностью до членов порядка $\Delta n/n$ (n — средний показатель преломления слоя) оценим по формуле Лоренц—Лоренца в виде

$$\Delta n = \frac{(n^2 + 2)^2}{6n} \sum_i \Delta c_i R_i,\tag{1}$$

где Δc_i и R_i — амплитуды модуляции концентрации и мольные рефракции *i*-го компонента. В нашем случае величина Δn непосредственно после прекращения записи будет равна

$$\Delta n_0 = \frac{(n^2 + 2)^2 \Delta c_p (R_p - R_s)}{6n},$$
(2)

где R_p и R_s — мольные рефракции фотопродукта и исходного светочувствительного вещества. После окончания процесса диффузии имеем

$$\Delta n_c = \frac{(n^2 + 2)^2 \Delta c_p R_p}{6n}.$$
(3)

Следовательно, коэффициент усиления *М* (по амплитуде модуляции показателя преломления) определяется выражением

$$M \equiv \frac{|\Delta n_e|}{\Delta n_0} = \frac{R_p}{|R_p - R_s|}.$$
(4)

При голографической записи величина Δn_e определяет достижимую дифракционную эффективность η и поэтому должна быть максимальна. Напротив, небольшие Δn_0 при достаточном коэффициенте усиления M позволяют избегать искажений, вызванных дифракцией на записываемых структурах, а также рассогласованием последних с интерференционной картиной вследствие изменения среднего показателя

преломления слоя. Из (3), (4) видно, что Δn_e ограничивается молярной рефракцией фотопродукта и достижимой амплитудой модуляции его концентрации, при этом коэффициент усиления тем больше, чем меньше разница в рефракциях исходного вещества и фотопродукта. Для фотопродукта ФХ величина R_p , оцененная по рефракциям связей для D-линии натрия [2], равна 64.6 сm³/mol, а $R_p - R_s = 4.3$ cm³/mol, что не позволяет получать коэффициент усиления больше 15 (на практике достигнута величина $M \approx 8$, что соответствует данным о примерно половинном присоединении ФХ [3]). Величина Δc_p ограничивается исходной концентрацией светочувствительного вещества c_s и, как правило, должна быть существенно меньше последней для того, чтобы избежать искажений в в максимумах интерференционной картины, вызванных расходованием фоточувствительного вещества. Для ФХ в полимерах величина c_s лимитируется кристаллизацией и не превышает $5 \cdot 10^{-4}$ mol/cm³.

Выбор ксантона (КС) в качестве фоточувствительной добавки обусловлен, прежде всего, возможностью фотоприсоединения молекул этого кетона к полимерной матрице вследствие фотовосстановления по следующей схеме [4]:

Кроме того, оцененные значения молярной рефракции фотопродукта КС и ее изменения при фоторефракции $R_p = 54.65$, $R_p - R_s = 0.5 \text{ cm}^3/\text{mol}$ позволяют рассчитывать на значительно больший коэффициент усиления по сравнению с ФХ при сравнимой конечной дифракционной эффективности. Немаловажно также, что КС можно ввести в матрицу полиметилметакрилата в концентрации до 10^{-3} mol/cm³, что значительно больше предельной концентрации ФХ при тех же условиях. Область спектральной чувствительности материалов, содержащих КС, лежит в ближнем УФ-диапазоне (максимум поглощения приходится на 330 nm, а для удобных в голографии слоев толщиной около $100 \, \mu$ m

подходящая оптическая плотность 0.1–0.2 приходится на длины волн распространенных источников 355 и 365 nm. Кроме того, полимерные слои, содержащие фотопревращенный КС, испытывают усадку при прогреве [4], что отражает, по-видимому, уменьшение мольного объема при фотопревращении КС. При этом не должно создаваться препятствий для диффузии крупных молекул КС.

Нами исследовались слои полиметилметакрилата толщиной $20-50\,\mu$ m, содержащие 5-6% молекул КС. Слои готовились поливом с последующей сушкой до постоянной массы. В ряде случаев для устранения рельефообразования использовались стеклянные покровные слои, которые закреплялись прессованием при повышенных температурах. Образцы экспонировались через маску, создающую периодическое распределение интенсивности с периодом $20-80\,\mu$ m, светом длиной волны 365 nm, для которой слои указанных толщин являются оптически тонкими. Записанные фазовые решетки зондировались He–Ne-лазером (633 nm), при этом измерялась дифракционная эффективность первого и более высоких порядков дифракции. При необходимости влияние рельефной составляющей решетки в образцах без покровного слоя исключалось заполнением рельефов иммерсионной жидкостью с близким к среднему по слою показателем преломления.

Зависимости относительной модуляции показателя преломления $\Delta n_r = \Delta n / \Delta n_e$ для основной гармоники решеток, вычисленные с использованием формулы дифракционной интенсивности для двумерной фазовой решетки [5], приведены на рис. 1. Непосредственно после экспонирования фазовые решетки практически отсутствуют ($\eta < 0.001$, $\Delta n_0 < 1.3 \cdot 10^{-4}$), что соответствует ожидаемой малой величине $|R_s - R_p|$, однако прогрев при повышенных температурах приводит к значительному увеличению η . В слоях толщиной 50 μ m после усиления достигнуты амплитуды модуляции $\Delta n_e = 4 \cdot 10^{-3}$ (коэффициент усиления M > 30), что достаточно для формирования голографических решеток с близкой к предельной дифракционной эффективностью. Кривые нарастания Δn_r хорошо аппроксимируются зависимостью вида

$$\Delta n_r = a_1 - a_2 \exp(-\gamma t). \tag{5}$$

Подобная же зависимость следует из решения диффузионного уравнения для начального синусоидального распределения диффундирующего компонента (неприсоединенного КС) с учетом (1). Кроме того, для диффузионного процесса характерной является зависимость γ от периода

Рис. 1. Зависимость относительной амплитуды модуляции показателя преломления от времени для решеток с периодом 80 (1,3), 30 μ m (2) при трехступенчатом прогреве. Температура 80°С (0-32 h), 100°С (32-100 h), 110°С (100-200 h). Прогрев при 110°С проводился после однородного экспонирования образцов. Кривые 1, 2 относятся к образцу без покровного слоя, 3 — с покровным слоем. Точки — экспериментальные данные, сплошные линии — аппроксимации участков нарастания.

решетки d

$$\gamma = \frac{4\pi^2 D}{d^2},\tag{6}$$

где *D* — коэффициент диффузии.

Такая зависимость была обнаружена нами как для образцов с покровным слоем, так и без него (рис. 2), что является веским доводом в пользу диффузионного механизма усиления. Вычисленный согласно (6) коэффициент диффузии при 80°С равен $2.5 \cdot 10^{-14}$ и $1.8 \cdot 10^{-14}$ m²/s для образцов соответственно с покровным слоем и без него. Как нетрудно показать, для чисто диффузионного механизма усиления при близких значениях R_p и R_s величины a_1 и a_2 также должны быть близкими и примерно равными 1. В нашем же случае величина a_2 (которую можно трактовать как вклад диффузии в усиление) уменышалась от 0.8 до 0.6 при уменьшении периода от 80 до 25μ m, что хорошо видно на рис. 1. Это свидетельствует о наличии еще одного "быстрого" механизма усиления (характерное время процесса < 20 min). Такое

Рис. 2. Зависимости γ от d^2 , демонстрирующие диффузионный характер усиления решеток на образце без покровного слоя (1) и покровным слоем (2).

поведение возможно вследствие перераспределения плотности, вызванного релаксацией напряжений, возникающих при фотопревращении КС и проявляющихся в наблюдаемой быстрой непродолжительной усадке экспонированных областей в образцах без покровного слоя.

После усиления решеток при двухступенчатом прогреве (прогрев при более высокой температуре после усиления приводил к небольшому уменьшению Δn_r , связанному, вероятно, с процессами релаксации в полимерной матрице) проводили однородное экспонирование образцов для фотопревращения КС, оставшегося в слое, и дальнейший их прогрев при температурах выше температуры стеклования (рис. 1). Сохранение решеток после однородного экспонирования также свидетельствует об основном вкладе диффузии в процесс усиления. Уменьшение Δn_r после прогрева вряд ли вызвано диффузионными процессами, поскольку не наблюдается характерной зависимости времени релаксации от периода решетки. Более вероятной причиной уменьшения Δn , как и в случае быстрой недиффузионной фазы усиления, может быть перераспределение плотности. Причиной такого перераспределения может быть физическое сшивание [6], являющееся следствием уменьшения

подвижности фрагментов макромолекул при присоединении крупных молекул КС и приводящее возрастанию плотности в экспонированных областях и быстрому росту Δn . Прогрев при высокой температуре после однородного экспонирования может разрушать физическую сетку и приводить к наблюдаемому уменьшению Δn . В пользу этого предположения говорит величина уменьшения Δn_r , примерно равная вкладу недиффузионных процессов в процессе усиления (который можно характеризовать величиной a_1-a_2).

Наблюдаемое рельефообразование с долговременной усадкой экспонированных областей, сопровождающее процесс усиления решеток без покровного слоя, мало влияет на процессы усиления решеток в исследованном нами диапазоне периодов d (разумеется, не считая тривиального влияния добавочной рельефной решетки). Несколько больший коэффициент диффузии в герметизированных слоях скорее связан с большей "рыхлостью" полимерной матрицей из-за затруднений в релаксации полимера под покровным слоем и удаления остаточного растворителя. Инверсия рельефа, сопровождающая усадку [4], происходит в те времена, когда основные процессы усиления уже заканчиваются, и не может существенно влиять на диффузию. Однако не исключено такое влияние в случае решеток с другими периодами.

Список литературы

- [1] Вениаминов А.В., Гончаров В.Ф., Попов А.П. // Опт. и спектр. 1991. Т. 70. № 4. С. 864–869.
- [2] Химическая энциклопедия. Т. 4. / Редкол.: Зефиров Н.С. (гл. ред.) и др. М., 1995. 639 с.
- [3] Бандюк О.В., Шелехов Н.С., Попов А.П. и др. // ЖПХ. 1988. Т. 61. № 4. С. 946–948.
- [4] Станкевич А.И., Могильный В.В. // Вестник БГУ. Сер. 1. 2003. № 3. С. 13–16.
- [5] Шварц К.К. Физика оптической записи в диэлектриках и полупроводниках. Рига, 1986. 232 с.
- [6] Гросберг А.Ю., Хохлов А.Р. Статистическая физика макромолекул. М., 1989. 346 с.