05;06

Влияние диэлектрических покрытий на межфазную энергию тонких пленок сплавов системы AI—Li

© В.А. Созаев, Р.А. Чернышова

Кабардино-Балкарский государственный университет, Нальчик E-mail: sozaevv@kbsu.ru

Поступило в Редакцию 11 ноября 2004 г.

В рамках метода функционала электронной плотности оценивается межфазная энергия пленок сплава эквиатомного состава Al_{0.5}Li_{0.5}, граничащих с диэлектрической средой. Показано, что зависимость $\Delta \sigma = \sigma_0 - \sigma(\varepsilon)$ (где σ_0 — поверхностная энергия, $\sigma(\varepsilon)$ — межфазная энергия пленки сплава) от обратного значения диэлектрической проницаемости ε^{-1} среды близка к линейной.

Влияние диэлектрических сред на межфазные характеристики тонких пленок металлических сплавов изучено недостаточно. Вместе с тем подобные данные необходимы при разработке активных и пассивных элементов изделий микро- и наноэлектроники, химических источников токов, капиллярных аккумуляторов энергии. Особый интерес представляют исследования межфазных характеристик, сплавов системы Al–Li, поскольку они имеют важное практическое приложение. В этих сплавах наблюдается явление термически- и радиационно-индуцированной сегрегации "легкого" компонента (лития) на свободной поверхности [1,2]. Сплавы Al–Li являются неудобным объектом для экспериментального исследования, поскольку легкие элементы трудны для детектирования. В связи с этим представляет интерес теоретическая оценка поверхностных характеристик сплавов Al–Li.

В данной работе в рамках метода функционала электронной плотности (МФЭП) оценивается межфазная энергия тонких пленок сплавов алюминий—литий, граничащих с диэлектрическими средами.

1

Модель межфазной границы и методика расчета изложены в работе [3]. Если диэлектрические покрытия одинаковы с двух сторон пленки ($\varepsilon_1 = \varepsilon_2 = \varepsilon$, где ε — диэлектрическая проницаемость среды), то межфазную энергию в "желе" приближении можно записать в виде:

$$\sigma_{j} = \frac{1}{2} \int_{0}^{\infty} \varphi(z) \left[n_{-}(z) - n_{+}(z) \right] dz + 0.3(3\pi^{2})^{2/3} \int_{0}^{\infty} \left[n_{-}^{5/3}(z) - n_{+}^{5/3}(z) \right] dz,$$

$$-0.75(3/\pi)^{1/3} \int_{0}^{\infty} \left[n_{-}^{4/3}(z) - n_{+}^{4/3}(z) \right] dz$$

$$-0.056 \int_{0}^{\infty} \left[\frac{n_{-}^{4/3}(z)}{0.079 + n_{-}^{1/3}(z)} - \frac{n_{+}^{4/3}(z)}{0.079 + n_{+}^{1/3}(z)} \right] dz$$

$$+ \frac{1}{72} \int_{0}^{\infty} \frac{|\nabla n_{-}(z)|^{2}}{n_{-}(z)} dz + C_{xc}(r_{s}) \int_{0}^{\infty} \frac{|\nabla n_{-}(z)|^{2}}{n_{-}^{4/3}(z)} dz, \quad (1)$$

где $C_{xc}(r_s) = (2.702 - 0.174r_s)10^{-3}$, $r_s = (4/3\pi n_-)^{-1/3}$; $n_-(z)$ и $n_+(z)$ — функции, характеризующие распределение отрицательного и положительного заряда соответственно; $\varphi(z)$ — функция, характеризующая распределение электростатического потенциала на межфазной границе [3]. Первое слагаемое в (1) — вклад собственной электростатической энергии взаимодействия электронного газа, взаимодействия электронного газа с зарядом "желе" и взаимодействия электронного газа с положительным зарядом адсорбционного слоя, которая зависит от расположения гиббсовой координаты, второе слагаемое — вклад кинетической энергии невзаимодействующего электронного газа; третье — поправка к кинетической энергии на неоднородность поля Вейцзеккера–Киржница; четвертое — вклад энергии обменного взаимодействия в σ_j ; пятое — вклад корреляционного взаимодействия в σ_j ; шестое — поправка на нелокальность к обменно-корреляционному взаимодействию, взятому в приближении Гелдарта–Резолта.

Процедура вычислений включала минимизацию межфазной энергии путем варьирования параметра β и поверхностной концентрации x_s с шагом 0.001. Точность вычислений координаты Гиббса $R_G - 10^{-5}$, межфазной энергии -10^{-3} . В расчетах в качестве первого приближения принималось, что межфазные заряды отсутствовали.

Письма в ЖТФ, 2005, том 31, вып. 10

Зависимость межфазной энергии пленки сплава Al_{0.5}Li_{0.5} от обратного значения диэлектрической проницаемости ε^{-1} среды: I — толщина пленки $L = 10a_0$, $2 - L = 15a_0$.

В качестве примера приводятся оценки межфазной энергии (МЭ) для пленок сплава эквиатомного состава $Al_{0.5}Li_{0.5}$ толщиной $L = 10a_0$ $L = 15a_0$ (где a_0 — радиус 1-й боровской орбиты). Результаты вычислений показывают, что как с увеличением диэлектрической проницаемости покрытий, так и с увеличением толщины пленки $Al_{0.5}Li_{0.5}$ межфазная энергия уменьшается, как и в случае пленок сплавов щелочных металлов [3].

Оценки показывают также, что с увеличением толщины пленки усиливается эффект "вытягивания" электронного распределения из пленки сплава в диэлектрик и усиливается поверхностная сегрегация Li.

Таким образом, снижение межфазной энергии пленок сплава, граничащих с диэлектрической средой, объясняется действием в основном двух факторов:

1) эффекта вытягивания электронного распределения из пленки сплава в диэлектрик;

2) эффекта индуцированной поверхности сегрегации Li — компонента с более низкой поверхностной энергией.

На рисунке показана зависимость $\Delta \sigma = \sigma_0 - \sigma(\varepsilon)$ (где σ_0 — поверхностная энергия, $\sigma(\varepsilon)$ — межфазная энергия) пленки сплава Al_{0.5}Li_{0.5}

1* Письма в ЖТФ, 2005, том 31, вып. 10

от обратного значения диэлектрической проницаемости ε^{-1} среды: (1 — толщина пленки $L = 10a_0$ и 2 — $L = 15a_0$). Как видно из рисунка, зависимости $\Delta \sigma$ от $1/\varepsilon$ близки к линейным.

Оценки отдельных вкладов в межфазную энергию показывают, что наибольший вклад в σ_j вносят кинетическая σ_k , обменная σ_a и электростатическая σ_c составляющие.

Выводы.

1. Показано, что при заданной толщине пленок сплавов, в отсутствие межфазного заряда, влияние диэлектрической среды осуществляется вследствие эффекта "вытягивания" электронного распределения из пленки в диэлектрическое покрытие и вследствие эффекта индуцированной поверхностной сегрегации.

2. Показано, что с увеличением диэлектрической проницаемости покрытия и толщины пленки сплава $Al_{0.5}Li_{0.5}$ межфазная энергия уменьшается (а следовательно, увеличивается энергия адгезии), как и в случае пленок сплавов щелочных металлов.

3. Показано, что зависимости $\Delta \sigma$ от обратного значения диэлектрической проницаемости ε^{-1} (где $\Delta \sigma = \sigma_0 - \sigma(\varepsilon), \sigma_0, \sigma(\varepsilon)$ — поверхностная и межфазная энергия) для пленок сплавов Al_{0.5}Li_{0.5}, граничащих с диэлектрической средой, близки к линейным.

Список литературы

- [1] Бондаренко Г.Г., Кучерявый С.П. // Физика и химия обработки материалов. 1991. № 1. С. 132–135.
- [2] Лозовой А.Ю., Коржавый П.А., Пономорева А.В., Векилов Ю.Х. // Материаловедение. 1997. № 1. С. 43–50.
- [3] Созаев В.А., Чернышова Р.А., Яганов Д.В. // Изв. АН. Сер. Физ. 2004. Т. 68. № 5. С. 657–660.

Письма в ЖТФ, 2005, том 31, вып. 10