01;09 Определение параметров уравнения Икеды по зашумленному временному ряду

© В.И. Пономаренко, М.Д. Прохоров

Саратовское отделение Института радиотехники и электроники РАН E-mail: sbire@sgu.ru

Поступило в Редакцию 30 сентября 2004 г.

Предложена процедура определения всех параметров дифференциального уравнения с запаздыванием Икеды, моделирующего динамику пассивного оптического резонатора, по временному ряду динамической переменной. Продемонстрирована возможность восстановления нелинейной функции и параметров уравнения Икеды даже при наличии высокого уровня шума.

При моделировании пространственно-развитых систем с обратной связью необходимо учитывать, что сигналы распространяются с конечной скоростью и им требуется время на преодоление расстояний. Поэтому оптические системы с запаздывающей обратной связью, как активные, так и пассивные, обычно моделируются дифференциальными уравнениями с запаздывающим аргументом. Например, для описания динамики пассивного оптического резонатора используется уравнение Икеды [1,2]

$$\dot{x}(t) = -x(t) + \mu \sin(x(t - \tau_0) - x_0), \tag{1}$$

где переменная x характеризует сдвиг фазы электрического поля в нелинейной поглощающей среде кольцевого резонатора, x_0 — постоянный фазовый сдвиг, μ пропорционально интенсивности лазерного излучения, подаваемого на вход резонатора, а τ_0 — время распространения света в кольцевом резонаторе. Отметим, что уравнение Икеды стало эталонной моделью, широко используемой при исследовании сложной динамики систем с запаздыванием.

В данной работе нами продемонстрирована возможность восстановления уравнения Икеды (1) по временному ряду динамической переменной. Задача восстановления нелинейных динамических моделей систем с запаздывающей обратной связью по их хаотическим временным рядам

73

привлекает к себе в последние годы большое внимание. Так как системы с запаздыванием обладают бесконечно большим числом степеней свободы и могут демонстрировать хаотические движения очень высокой размерности [3], использование стандартных методов реконструкции систем по временному ряду не приводит к успеху и для восстановления систем с запаздыванием разрабатываются специальные приемы [4–13]. Большинство из них основаны на проецировании бесконечномерного фазового пространства системы с запаздыванием в подпространства малой размерности. При этом используются такие критерии качества реконструкции системы с запаздыванием, как минимальная ошибка прогноза построенной модели [4–7], минимальная величина информационной энтропии [8] или различные меры сложности спроецированного временно́го ряда [9–13].

Уравнение Икеды (1) относится к широкому классу систем с запаздыванием, описывамых дифференциальным уравнением с запаздыванием первого порядка

$$\varepsilon_0 \dot{x}(t) = -x(t) + f(x(t - \tau_0)), \qquad (2)$$

где f — нелинейная функция, а ε_0 — параметр, характеризующий инерционные свойства системы. Для уравнения (1) $f = \mu \sin(x(t - \tau_0) - x_0)$ и $\varepsilon_0 = 1$. Использованные нами значения параметров $\mu = 20$, $\tau_0 = 2$, $x_0 = \pi/3$ соответствовали движению системы (1) на хаотическом аттракторе высокой размерности [2]. На рис. 1, *а* приведен фрагмент временно́го ряда уравнения Икеды. Масштабы таковы, что 200 точек ряда занимали временно́й интервал, равный времени задержки $\tau_0 = 2$. Весь ряд состоял из 20 000 точек и содержал около 1100 экстремумов.

Для восстановления времени задержки τ_0 по наблюдаемой реализации x(t) уравнения Икеды воспользуемся методом, предложенным нами в работе [14], в которой было показано, что во временной реализации систем с запаздыванием вида (2) практически отсутствуют экстремумы, удаленные друг от друга на τ_0 . Подсчитав число N одновременных обращений в нуль $\dot{x}(t)$ и $\dot{x}(t - \tau)$ для различных значений τ , перебираемых с шагом, равным шагу интегрирования h = 0.01, построим зависимость $N(\tau)$ (рис. 1, b). Для оценки производной $\dot{x}(t)$ по временному ряду мы использовали локальную параболическую аппроксимацию. Абсолютный минимум $N(\tau)$ наблюдается при $\tau = \tau_0 = 2.00$, что в точности соответствует времени запаздывания. Отметим, что такой метод определения времени запаздывания обладает высоким быстродействием,

Рис. 1. a — временная реализация уравнения Икеды (1). b — число N пар экстремумов во временной реализации, удаленных друг от друга на время τ , в зависимости от величины τ . $N(\tau)$ нормировано на общее число экстремумов во временном ряду. $N_{\min}(\tau) = N(2.00)$. c — длина L линии, соединяющей упорядоченные по величине $x(t - \tau_0)$ точки на плоскости $(x(t - \tau_0), \varepsilon \dot{x}(t) + x(t))$, в зависимости от ε . $L(\varepsilon)$ нормирована на число точек. $L_{\min}(\varepsilon) = L(1.00)$. d — восстановленная нелинейная функция.

поскольку использует только операции сравнения и сложения, не требуя вычисления каких-либо мер сложности движения [9–13] или ошибки аппроксимации данных [4–7].

Для определения по хаотической временной реализации параметра инерционности ε_0 и нелинейной функции f запишем уравнение (2) в виде

$$\varepsilon_0 \dot{x}(t) + x(t) = f(x(t - \tau_0)). \tag{3}$$

Таким образом, если построить на плоскости множество точек с координатами ($x(t - \tau_0)$, $\varepsilon_0 \dot{x}(t) + x(t)$), то оно воспроизведет функцию f. Поскольку заранее величина ε_0 неизвестна, будем строить зависимости $\varepsilon \dot{x}(t) + x(t)$ от $x(t - \tau_0)$ для различных значений ε , добиваясь одно-

значной зависимости на плоскости $(x(t - \tau_0), \epsilon \dot{x}(t) + x(t)),$ которая возможна лишь при $\varepsilon = \varepsilon_0$. В качестве количественного критерия однозначности при таком поиске ε_0 будем использовать минимальную длину линии $L(\varepsilon)$, соединяющей точки на плоскости $(x(t - \tau_0), \varepsilon \dot{x}(t) + x(t)),$ упорядоченные по величине координаты $x(t - \tau_0)$. При построении зависимости $L(\varepsilon)$ (рис. 1, c) шаг изменения ε выбирался равным 0.01. Минимум $L(\varepsilon)$ наблюдается точно при $\varepsilon = \varepsilon_0 = 1.00$. Построенное при этом значении множество точек на плоскости $(x(t - \tau_0), \varepsilon_0 \dot{x}(t) + x(t))$ (рис. 1, d), с хорошей точностью воспроизводит нелинейную функцию уравнения (1). Отметим, что в отличие от других методов, использующих для восстановления нелинейной функции только экстремальные точки или точки, удовлетворяющие определенным условиям [10,11], предлагаемый нами подход использует все точки временного ряда. Это позволяет по коротким временным рядам более полно восстанавливать нелинейную функцию даже в случаях слаборазвитого хаоса. Например, для построения $L(\varepsilon)$ и восстановления мультимодальной функции f мы использовали лишь 2000 точек временного ряда.

Параметр μ уравнения Икеды может быть приближенно оценен по амплитуде синусоиды на графике восстановленной нелинейной функции (рис. 1, *d*). Параметр x_0 может быть найден по формуле

$$x_0 = -\arcsin\left(\frac{\varepsilon_0 \dot{x}(t) + x(t)}{\mu}\right),\tag{4}$$

где $\varepsilon_0 \dot{x}(t) + x(t)$ — значение восстановленной функции при $x(t - \tau_0) = 0.$

Для более точного определения параметров μ и x_0 мы провели полиномиальную аппроксимацию восстановленной функции f. Оценка параметров μ и x_0 с точностью до одного процента достигается при использовании полинома степени 15 и выше. При аппроксимации восстановленной нелинейной функции полиномом 20-й степени мы получили $\mu = 19.94$ и $x_0 = 1.046$ ($\pi/3 \approx 1.047$).

Для оценки возможностей метода при наличии возмущений мы применили его к рядам, полученнным при добавлении к временному ряду уравнения (1) гауссовского белого шума с нулевым средним значением. На рис. 2 приведены результаты восстановления уравнения Икеды для случая, когда добавленный шум имел среднеквадратичное отклонение, составляющее 20% от среднеквадратичного отклонения исходного ряда. Положение минимума $N(\tau)$ (рис. 2, *a*) позволило нам

Рис. 2. Восстановление уравнения Икеды в присутствии 20% аддитивного гауссовского белого шума: a — зависимость $N(\tau)$. $N_{\min}(\tau) = N(2.00)$. b — зависимость $L(\varepsilon)$. $L_{\min}(\varepsilon) = L(0.98)$. c — восстановленная нелинейная функция.

точно восстановить время запаздывания $\tau'_0 = 2.00$, а положение минимума $L(\varepsilon)$ (рис. 2, b) — получить близкую оценку параметра инерционности $\varepsilon'_0 = 0.98$. Восстановленная при найденных τ'_0 и ε'_0 нелинейная функция изображена на рис. 2, c. Несмотря на достаточно высокий уровень шума и неточность определения ε_0 , качество восстановления нелинейной функции достаточно хорошее, существенно лучше, чем в работе [15], использующей при тех же значениях параметров уравнения Икеды метод оптимальных преобразований, требующий больших вычислительных затрат. Аппроксимация восстановленной нелинейной функции (рис. 2, c) полиномом 20-й степени позволила нам получить следующую оценку параметров: $\mu = 19.38$ и $x_0 = 1.048$.

Итак, нами проведено восстановление параметров уравнения Икеды по временному ряду с помощью метода, основанного на статистическом анализе временных интервалов между экстремумами ряда и проецировании бесконечномерного фазового пространства системы Икеды (1) в

специальным образом выбранные двумерные подпространства. Метод позволяет обеспечить высокое качество восстановления нелинейной функции и параметров уравнения Икеды даже в присутствии шума достаточно высокого уровня.

Работа выполнена при поддержке РФФИ, грант № 03-02-17593, CRDF, Award No. REC-006 и INTAS, грант № 03-55-920.

Список литературы

- [1] Ikeda K. // Opt. Commun. 1979. V. 30. P. 257–261.
- [2] Ikeda K., Matsumoto K. // Physica D. 1987. V. 29. P. 223-235.
- [3] Farmer J.D. // Physica D. 1982. V. 4. P. 366-393.
- [4] Fowler A.C., Kember G. // Phys. Lett. A. 1993. V. 175. P. 402-408.
- [5] Hegger R., Bünner M.J., Kantz H., Giaquinta A. // Phys. Rev. Lett. 1998. V. 81. P. 558–561.
- [6] Zhou C., Lai C.-H. // Phys. Rev. E. 1999. V. 60. N 1. P. 320-323.
- [7] Udaltsov V.S., Goedgebuer J.-P., Larger L. et al. // Phys. Lett. A. 2003. V. 308.
 P. 54–60.
- [8] Tian Y.-C., Gao F. // Physica D. 1997. V. 108. P. 113-118.
- [9] Kaplan D.T., Glass L. // Physica D. 1993. V. 64. P. 431-454.
- [10] Bünner M.J., Popp M., Meyer Th. et al. // Phys. Lett. A. 1996. V. 211. P. 345– 349.
- [11] Bünner M.J., Popp M., Meyer Th. et al. // Phys. Rev. E. 1996. V. 54. P. 3082– 3085.
- [12] Bünner M.J., Meyer Th., Kittel A., Parisi J. // Phys. Rev. E. 1997. V. 56. P. 5083– 5089.
- [13] Bünner M.J., Ciofini M., Giaquinta A. et al. // Eur. Phys. J. D. 2000. V. 10. P. 165–176.
- [14] Bezruchko B.P., Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. // Phys. Rev. E. 2001. V. 64. 056216.
- [15] Voss H., Kurths J. // Chaos, Solitons and Fractals. 1999. V. 10. P. 805-809.