⁰⁶ Туннелирование электронов в тонкопленочных электролюминесцентных излучателях на основе ZnS: Mn

© Н.Т. Гурин, Д.В. Рябов, О.Ю. Сабитов, А.М. Афанасьев

Ульяновский государственный университет E-mail: gurinnt@sv.ulsu.ru

Поступило в Редакцию 4 августа 2004 г.

Методом численного моделирования экспериментальных зависимостей тока и заряда, протекающего через слой люминофора, от времени для тонкопленочных электролюминесцентных излучателей на основе ZnS: Мn с помощью расчетной временной зависимости туннельного тока электронов с поверхностных состояний прикатодной границы раздела диэлектрик-полупроводник показано, что глубина уровней поверхностных состояний изменяется в процессе роста поля от $\sim 0.6~{\rm дo}~1.3~{\rm eV},$ вероятность туннелирования от $10-15~{\rm do}~300-400~{\rm s}^{-1},$ ширина потенциального барьера от $\sim 9~{\rm do}~5.7~{\rm nm}.$

Как известно, процесс люминесценции в тонкопленочных электролюминесцентных излучателях (ТП ЭЛИ) структуры металл-диэлектрик-полупроводник-диэлектрик-металл на основе ZnS: Mn обусловлен туннелированием носителей заряда с поверхностных состояний (ПС) прикатодной границы раздела диэлектрик-полупроводник в сильном электрическом поле, последующим лавинным размножением носителей из-за ударной ионизации собственных дефектов структуры и примесей с одновременным ударным возбуждением центров свечения Mn²⁺ [1]. Точное описание процесса туннелирования электронов с ПС и параметров потенциального барьера на указанной границе раздела до настоящего времени отсутствует. Известные результаты моделирования данного процесса [2,3], полученные без учета умножения электронов в слое люминофора и в предположении дискретного уровня ПС с энергией $E_t = 0.8 \,\text{eV}$ ниже дна зоны проводимости ZnS:Mn, качественно согласуются с экспериментальными данными. В [4] также на основе моделирования зависимости скорости туннельной эмиссии от поля по-

79

казано, что ПС могут быть локализованы в области энергий 0.6-0.9 eV ниже дна зоны проводимости. Автором [5] также из качественного совпадения результатов моделирования с экспериментальными зависимостями тока и напряжения от времени, действующими в ТП ЭЛИ при возбуждении ТП ЭЛИ синусоидальным напряжением, определена глубина залегания ПС $E_t = 1.05 \text{ eV}$ с возможным разбросом от 0.9 до 1.2 eV. Авторами [6] при моделировании гистерезиса вольт-яркостной характеристики ТП ЭЛИ предполагалось равномерное распределение плотности ПС в диапазоне E_t от 0 до 2 eV с заполнением их до уровня Ферми в равновесном состоянии.

Целью работы является определение характеристик процесса туннелирования и параметров ПС на прикатодной границе раздела диэлектрик-полупроводник.

Для определения указанных характеристик и параметров используем зависимость тока, протекающего через слой люминофора, от времени $I_p(t)$. Как ранее нами было показано [7,8], начальный участок быстрого роста $I_p(t)$ при возбуждении ТП ЭЛИ линейно нарастающим напряжением является экспоненциальным. При этом зависимость среднего поля в слое люминофора от времени $F_p(t)$ на этом участке практически линейна (см. участок I на рисунке), что свидетельствует об отсутствии заметного объемного заряда в слое люминофора и однородном распределении поля в данном слое. С учетом значительного превышения падения напряжения на слое люминофора (-45-120 V) над величиной Eg/q, где Eg — ширина запрещенной зоны ZnS:Mn ($3.7 \, eV$), q — заряд электрона, такое же поле $F_p(t)$ действует в области потенциального барьера на прикатодной границе раздела диэлектрик–полупроводник.

При однородном поле в слое люминофора коэффициент ударной ионизации электронов в этом слое α_n может быть представлен в виде

$$\alpha_n = \frac{1}{n_p} \frac{\partial n_p}{\partial x} = \frac{1}{n_p} \frac{\Delta n_p}{\Delta x} = \frac{1}{n_p} \frac{n_p - n_{p0}}{d_p} = \frac{1}{d_p} \left(1 - \frac{1}{M} \right), \tag{1}$$

где n_{p0} и n_p — количество электронов, вошедших в область ударной ионизации и вышедших из этой области соответственно, d_p — толщина слоя люминофора, M — коэффициент умножения электронов, $M = n_p/n_{p0} = \text{const.}$

Тогда ток, входящий в область ударной ионизации, т.е. туннельный ток электронов с ПС прикатодной границы раздела диэлектрик-полу-

проводник, равен

$$I_{p0}(t) = \frac{I_p(t)}{M} = \frac{q}{M} \frac{\partial n_p(t)}{\partial t}.$$
 (2)

С другой стороны, зависимость $I_{p0}(t)$ может быть найдена из кинетического уравнения, описывающего туннелирование электронов с ПС через потенциальный барьер в виде

$$I_{p0}(t) = W(t) \left[Q_{ss} - \frac{Q_p(t)}{M} \right],$$
(3)

где W(t) — вероятность туннелирования электронов в единицу времени (скорость генерации) определим с помощью оправдавшей себя применительно к излучателям на основе ZnS [5,9] формулой

$$W(t) = \frac{qF_p(t)}{2\sqrt{2m^*E_t(t)}} \exp\left[\frac{4\sqrt{2m^*E_t^{3/2}(t)}}{3q\hbar F_p(t)}\right],$$
(4)

 $Q_p(t) = \int_0^t I_p(t) dt$ — заряд, протекающий через слой люминофора, Q_{ss} — количество запасенного заряда на ПС, m^* — эффективная масса электрона, $m^* = 0.34m_e$ для ZnS [9], m_e — масса покоя электрона, \hbar — постоянная Планка.

При этом ввиду однородного распределения поля $F_p(t)$ в слое люминофора на участке I образованием объемного заряда за счет ударной ионизации глубоких центров, обусловленных собственными дефектами структуры [11] и, следовательно, генерацией дополнительных носителей заряда, можно пренебречь, т. е. $M \simeq 1$.

В дальнейшем выражения (2)–(4) использовались при численном моделировании экспериментальных зависимостей $I_p(t)$ с одновременным использованием зависимостей $Q_p(t)$ и $F_p(t)$ для определения характеристик процесса туннелирования электронов $E_p(t)$, W(t), а также ширины потенциального барьера $x_t(t)$ по формуле

$$x_t(t) = \frac{E_t(t)}{qF_p(t)}.$$
(5)

Экспериментальные зависимости были получены для ТП ЭЛИ, использованных в [10,11], со структурой МДПДМ, где М — нижний

прозрачный электрод на основе SnO₂ толщиной 0.2 μ m, нанесенный на стеклянную подложку, и верхний непрозрачный тонкопленочный электрод на основе Al толщиной 0.15 μ m, диаметром 1.5 mm; П — электролюминесцентный слой ZnS: Mn (0.5% mass.) толщиной 0.48 μ m; Д — диэлектрический слой ZrO₂ × Y₂O₃ (13% mass.) толщиной 0.17 μ m. Слой люминофора наносили вакуум-термическим испарением в квазизамкнутом объеме при температуре подложки 250°C с последующим отжигом при температуре 250°C в течение часа, непрозрачный электрод — вакуум-термическим испарением, диэлектрические слои получали электронно-лучевым испарением.

Исследования проводились при возбуждении ТП ЭЛИ знакопеременным напряжением треугольной формы в режиме однократного запуска, при котором напряжение возбуждения U(t) представляло собой пачку импульсов из двух периодов напряжения треугольной формы, следующих с частотой 20 Hz с подачей положительной или отрицательной полуволн напряжения в первом полупериоде на верхний электрод (варианты (+A1) и (-A1) соответственно). Время между однократными запусками составляло 100 s. Ток $I_e(t)$, протекающий через ТП ЭЛИ, измерялся аналогично [7,8,10,12].

Зависимости среднего поля в слое люминофора $F_p(t)$, а также тока $I_p(t)$ и заряда $Q_p(t)$, протекающих через слой люминофора в режиме свечения ТП ЭЛИ, находились по методике, изложенной в [7,12], для первого полупериода напряжения U(t) при значениях емкостей диэлектрических слоев 730 рF, слоя люминофора 275 рF, определенных с помощью измерителя иммитанса E7-14 и известных геометрических размеров ТП ЭЛИ. Численное моделирование зависимостей $I_p(t)$ проводилось с учетом ранее определенных [11] для используемых образцов ТП ЭЛИ значений $Q_{ss} = 1.7 - 1.9 \cdot 10^{-8}$ s и при двух значениях коэффициентов умножения: M = 1 и M = 1.5 (величина, полученная в [11] при амплитудном значении напряжения U(t) = 160 V).

Из приведенных на рисунке зависимостей следует, что на начальном участке I быстрого экспоненциального роста тока $I_p(t)$, когда зависимость $F_p(t)$ практически линейна (до $t \sim 9 \,\mathrm{ms}$), при возрастании t или $F_p(t)$ наблюдаются монотонный рост глубины залегания ПС $E_t(t)$ от ~ 0.6 до $\sim 1.3 \,\mathrm{eV}$ (см. рисунок, a) (аналогичный вид имеет зависимость $E_t(t)$ для варианта (+Al)), уменьшение ширины потенциального барьера на прикатодной границе раздела диэлектрик-полупроводник $x_t(t)$ с $\sim 9 \,\mathrm{дo} \sim 5.7 \,\mathrm{mm}$ для обоих вари-

Зависимости от времени: I - U(t); $2 - I_p(t)$; $3, 3' - E_t(t)$; $4 - F_p(t)$; $5, 5' - x_t(t)$ для варианта (-Al); 6, 6' - W(t); I — участок линейной зависимости $F_p(t)$, II — участок сублинейной зависимости $F_p(t)$; 3, 5 - M = 1.5, 3', 5' - M = 1; 6 — вариант (-Al).

антов (±Al) (см. рисунок, *b*), а также рост вероятности туннелирования W(t) от 10 до $300 \, \text{s}^{-1}$ для варианта (-Al) и от 15 до $400 \, \text{s}^{-1}$ для варианта (+Al) (см. рисунок, *c*). Эти результаты, с одной стороны, согласуются с упомянутыми выше данными [2–6], а с другой стороны, свидетельствуют о более сложном характере распределения уровней ПС по энергии по сравнению с моделью дискретного уровня и с моделью равномерного распределения ПС по энергии.

Полученные результаты демонстрируют также слабое влияние изменения значений коэффициента умножения M от 1 до 1.5 на зависимости $E_i(t), x_i(t)$.

Следует отметить, что правомерность использования формулы (4) для определения W(t) может свидетельствовать в пользу того, что на ПС электроны связаны с нейтральными центрами [9]. Полученные данные указывают также на то, что все уровни в запрещенной зоне ZnS:Mn, соответствующие собственным дефектам структуры и имеющие глубину залегания от дна зоны проводимости $\leq 1.3 \text{ eV}$, такие как Zn⁰_i (0.10–0.12 eV), Zn⁺_i (0.2 eV), Vs⁰ (0.2–1.05 eV) [8] на участке I экспоненциального роста тока $I_p(t)$ могут быть опустошены за счет туннелирования электронов с них в зону проводимости ZnS:Mn.

Работа поддержана грантом президента РФ № НШ-1428.2003.8.

Список литературы

- [1] Электролюминесцентные источники света / Под ред. И.К. Верещагина. М.: Энергоатомиздат, 1990. 168 с.
- [2] Bringuier E. // J. Appl. Phys. 1989. V. 66. N 3. P. 1314-1325.
- [3] Neyts K.A., De Visschere. // J.Appl. Phys. 1990. V. 68. N 8. P. 4163-4171.
- [4] Smith D.H. // J. Luminescence. 1981. V. 23. N 1. P. 209–235.
- [5] Васильченко В.П. // ЖПС. 1996. Т. 63. В. 3. С. 461–465.
- [6] Howard W.E., Sahni O., Alt M. // J. Appl. Phys. 1982. V. 53. N 1. P. 639-647.
- [7] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2002. Т. 72. В. 2. С. 74–83.
- [8] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2003. Т. 73. В. 4. С. 100–112.
- [9] Георгобиани А.Н., Пипинис П.А. Туннельные явления в люминесценции полупроводников. М.: Мир, 1994. 224 с.
- [10] Гурин Н.Т., Рябов Д.В. // Письма в ЖТФ. 2004. Т. 30. В. 9. С. 89–95.
- [11] Гурин Н.Т., Рябов Д.В. // ЖТФ. 2005. Т. 75. В. 1. С. 45–54.
- [12] Гурин Н.Т., Сабитов О.Ю., Шляпин А.В. // ЖТФ. 2001. Т. 71. В. 8. С. 48–58.