Структурные, электронные, механические, магнитные свойства и относительная стабильность полиморфных модификаций ReN₂ по данным *ab initio* расчетов

© И.Р. Шеин, А.Н. Еняшин, А.Л. Ивановский

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: ivanovskii@ihim.uran.ru

(Поступила в Редакцию 11 марта 2013 г.)

В рамках *ab initio* расчетов выполнен сравнительный анализ структурных, электронных, механических, магнитных свойств и относительной стабильности четырех возможных полиморфных модификаций динитрида рения, неметаллическая решетка которых включает как одиночные атомы азота, так и димеры N₂. Обнаружено, что недавно синтезированный гексагональный полиморф ReN_2 (структурный тип 2*H*-MoS₂) является слабым d^0 -магнетиком, где формирование магнитного состояния происходит за счет спинового расщепления N 2*p*-состояний.

Работа выполнена при поддержке Президиума УрО РАН (проект № 12-Т-3-1003).

1. Введение

Карбиды и нитриды переходных 3d-5d-металлов III—VI подгрупп давно привлекают внимание как материалы с уникальным сочетанием физико-химических свойств, таких как высокая радиационная, химическая стойкость, интересные электрофизические, магнитные, каталитические и термомеханические характеристики и ряд других [1–4].

В то же время карбиды и нитриды тяжелых 4*d*-, 5*d*-металлов VII–VIII подгрупп стали объектами детальных исследований сравнительно недавно, когда начиная с пионерской работы 2004 г. по синтезу образцов нитридов платины PtN_x [6] с помощью техники высоких давлений и температур, пленочных технологий и некоторых других методов был получен ряд новых карбидов и нитридов тяжелых 4*d*-, 5*d*-металлов (*M*): PtN, PtN₂, IrN₂, OsN₂, RuN_x, PdN₂, PtC [7–11].

Одной из наиболее интересных особенностей этих материалов является очень широкая область их стехиометрии, когда отношение M/(C,N) может варьироваться от $M_3(C,N)$ до $M(C,N)_3$. При этом, например, для нитридов неметаллическая подрешетка может как включать единичные атомы азота, так и состоять из димеров N₂ типа азогруппы -N=N-. В зависимости от стехиометрии комплекс свойств этих материалов существенно меняется (см. обзор [12]).

В этом отношении большой интерес представляет система Re–N, для которой синтезирован ряд богатых по металлу субнитридов рения (Re₃N и Re₂N) [13] и исследованы некоторые их физические свойства [14–18]. В ряде теоретических работ выполнен прогноз структурных, электронных и механических свойств мононитрида ReN [14,19,20] и высших нитридов рения ReN₂ [21–26] и ReN₄ [27]. При этом предполагалось, что ReN₂ может иметь кубический, гексагональный, тетрагональный или орторомбический структурный тип [21–25].

Недавно авторы [28] сообщили о синтезе динитрида рения ReN_2 (по реакции химического обмена между ReCl_5 и Li_3N , протекающей при давлении $P \sim 7.7$ GPa). Согласно [28], структура ReN_2 — гексагональная (типа MoS_2) и отличается от всех ранее предсказанных [21–25] структурных типов.

В настоящей работе представлены результаты *ab initio* расчетов структурных, электронных, механических, магнитных свойств новой фазы ReN_2 (тип MoS_2), которые сопоставлены с таковыми для трех других возможных полиморфов динитрида рения.

2. Модели и метод расчета

Фрагменты кристаллических структур рассмотренных полиморфов $ReN_2(I-IV)$ представлены на рис. 1.

Полиморф ReN₂(I) имеет гексагональную структуру типа 2H-MoS₂ [28] и образован блоками {N-Re-N}, которые состоят из гексагональной атомной сетки Re, заключенной между плоскими сетками атомов азота. В структуре ReN₂(I) укладка блоков {N-Re-N} вдоль оси c имеет тип ... ABABA.... Полиморф $\text{ReN}_2(\text{II})$ со структурным типом 2H-NbSe2 также образован блоками {N-Re-N}, которые сдвинуты друг относительно друга (по сравнению с $ReN_2(I)$) так, что атомы Re из соседних блоков расположены друг над другом (рис. 1). Укладка блоков для $ReN_2(II)$ вдоль оси c имеет тип ... АСАВСВ Подчеркнем, что в структуре обоих полиморфов ReN₂(I,II) ближайшее окружение каждого атома азота составляют три атома рения, в то время как атомы Re имеют тригонально-призматическую конфигурацию [ReN₆].

Принципиальным отличием двух других полиморфов $\text{ReN}_2(\text{III,IV})$ является присутствие в их структуре азогрупп -N=N-. Структуру гексагонального полиморфа $\text{ReN}_2(\text{III})$ можно описать как слои димеров N_2 , поме-

Параметр	ReN ₂ (I)	ReN ₂ (II)	ReN ₂ (III)	ReN ₂ (IV)
Пространственная группа	$MoS_2 (P6_3/mmc)$	$NbSe_2(P6_3/mmc)$	Pēm2	Cmcm
Симметрия	Гексагональная	Гексагональная	Гексагональная	Ромбическая
a	2.8607 (2.806*)	2.8554	2.9197	4.9503
b	_	_	-	2.8583
С	9.6009 (10.747*)	9.0327	7.7952	7.9744
Координаты	$\operatorname{Re}(1/3;2/3;1/4)$	Re(0;0;1/4)	Re(1/3;2/3;2/3)	Re(0;0;0)
атомов	N(1/3;2/3;0.62618)	N(1/3;2/3;0.11624)	N(0;0;0.08620)	N(0;2/3;0.1661)
$-E_{ m tot}$	54.8201	55.0335	55.8338	56.3546
$N(E_{ m F})$	2.447	1.353	2.316	1.078

Таблица 1. Оптимизированные параметры решетки (в Å), атомные координаты, полная энергия E_{tot} (в eV/cell) и плотность состояний на уровне Ферми $N(E_F)$ (в (eV · form.unit)⁻¹) для полиморфных модификаций ReN₂ в сравнении с экспериментом

* Эксперимент [28].

щенные между атомными сетками рения, чередующимися вдоль оси *c* по типу ... *ABAACA*.... При этом димеры N_2 из соседних слоев расположены друг над другом. Как и для полиморфов I и II, координационными полиэдрами [ReN₆], составляющими кристаллическую структуру полиморфа III, являются тригональные призмы. Наоборот, в структуре ромбического полиморфа ReN₂(IV) друг над другом расположены атомы Re (рис. 1), поэтому данная структура характеризуется октаэдрическим окружением атомов рения. Пространственные группы полиморфов ReN₂(I–IV) приведены в табл. 1.

Расчеты указанных структур проведены методом проекционных присоединенных волн (projector augmented-

Рис. 1. Фрагменты кристаллических структур рассмотренных полиморфов $ReN_2(I-IV)$. Полиморфы $ReN_2(I)$ и $ReN_2(II)$ образованы атомными слоями рения и азота; структура полиморфов $ReN_2(III)$ и $ReN_2(IV)$ включает димеры N_2 .

wave, PAW) по программе Vienna *Ab initio* Simulation Package (VASP) [29–31] с обобщенной градиентной аппроксимацией (generalized gradient approximation, GGA) обменно-корреляционного потенциала в форме PBE [32]. Для расчета структурных релаксаций использован градиентный квази-ньютоновский метод с условием сходимости по силам $\leq 0.01 \text{ eV/Å}$.

3. Результаты и обсуждение

3.1. Структурные параметры и относительная стабильность полиморфов $ReN_2(I-IV)$. Оптимизированные атомные координаты и параметры решеток $ReN_2(I-IV)$ суммированы в табл. 1. Для $ReN_2(I)$ расчетные данные с учетом известного факта занижения параметра *с* для слоистых систем методами функционала электронной плотности находятся в разумном согласии с экспериментом [28].

Для анализа относительной энергетической стабильности полиморфов $\text{ReN}_2(I-IV)$ воспользуемся величинами их полных энергий E_{tot} , полученными для оптимизированных структур. Видно, что, согласно этому индикатору, стабильность полиморфов должна возрастать в ряду $\text{ReN}_2(I) \rightarrow \text{ReN}_2(II) \rightarrow \text{ReN}_2(IV)$ (табл. 1).

С другой стороны, при обсуждении устойчивости кристаллических структур широко используется так называемый критерий механической стабильности (известный также как критерий Борна), использующий коэффициенты упругости C_{ij} (см. обзор [33]).

В рамках этого подхода критерием стабильности является выполнение следующих соотношений:

— для гексагональных кристаллов (в нашем случае $\operatorname{ReN}_2(I)-\operatorname{ReN}_2(III)$) $C_{11} > 0$, $(C_{11}-C_{12}) > 0$, $C_{44} > 0$ и $(C_{11}+C_{12})C_{33}-2C_{12}^2 > 0$;

— для кристаллов ромбической симметрии (ReN₂(IV)) $C_{11} > 0, C_{22} > 0, C_{33} > 0, C_{44} > 0, C_{55} > 0, C_{66} > 0,$ $[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0, (C_{11} + C_{22} - 2C_{12}) > 0, (C_{11} + C_{33} - 2C_{13}) > 0, (C_{22} + C_{33} - 2C_{23}) > 0$ [33,34].

Таблица 2. Независимые коэффициенты упругости *C_{ij}* (в GPa) для механически стабильных полиморфных модификаций ReN₂

Параметр	$\operatorname{ReN}_2(I)$	ReN ₂ (II)
C_{11}	569.8	627.9
C_{12}	226.9	209.1
C_{13}	53.2	49.6
C_{33}	172.9	267.7
C_{44}	11.1	115.4

Таблица 3. Модули всестороннего сжатия *B* (в GPa), сдвига *G* (в GPa), Юнга *Y* (в GPa), сжимаемость β (в GPa⁻¹) и отношение Пуассона ν для механически стабильных полиморфных модификаций ReN₂

Параметр*	ReN ₂ (I)	ReN ₂ (II)
B_V	219.9	237.8
B_R	37.4	116.4
В	128.7	177.1
C_V	104.0	169.1
C_R	21.8	133.9
G	62.6	151.5
Y	162.2	353.7
eta	0.00777	0.005647
ν	0.2898	0.1671

* Модули сжатия и сдвига (*B*, *G*)_V, (*B*, *G*)_R, *B*, *G* — расчеты в приближениях Войгта, Реусса и Войгта-Реусса-Хилла соответственно.

Расчеты независимых коэффициентов упругости C_{ij} (табл. 2) показывают, что полиморфы $\text{ReN}_2(I)$, $\text{ReN}_2(II)$ являются механически стабильными системами. Полиморф $\text{ReN}_2(III)$ находится на границе механической устойчивости ($(C_{11} - C_{12}) \leq 0$), тогда как полиморф $\text{ReN}_2(IV)$, для которого некоторые коэффициенты $C_{ij} < 0$, будет механически неустойчивым.

Таким образом, расчеты указывают на то, что присутствие в структуре ReN_2 димеров N_2 способствует росту энергетической стабильности соответствующих полиморфов, но приводит к их механической неустойчивости.

3.2. Механические параметры. Рассчитанные величины C_{ij} позволяют оценить основные параметры упругости моделируемых механически стабильных фаз ReN₂ (I,II): модулей всестороннего сжатия (*B*), сдвига (*G*), Юнга (*Y*), сжимаемость (β) и отношение Пуассона (ν) — по известным выражениям (см., например, [33,35]). Эти величины представлены в табл. 3 и приводят к следующим выводам:

1) для обоих полиморфов B > G, т.е. параметром, лимитирующим их механическую устойчивость, является модуль сдвига G;

2) согласно индикатору Пуга (отношение G/B [36]), если G/B < 0.57, материал является пластичным, и, наоборот, при G/B > 0.57 материал является хрупким. Согласно расчетам, для ReN₂(I) G/B = 0.49, для ReN₂(II) G/B = 0.86. Таким образом, $\text{ReN}_2(I)$ будет вести себя как пластичный материал, а $\text{ReN}_2(II)$ является хрупким.

Как известно, упругая анизотропия кристаллов отражает различный характер межатомных связей в разных кристаллографических направлениях и коррелирует с возможностью образования микротрещин в материалах. Для численной оценки этого параметра мы воспользовались так называемым универсальным индексом упругой анизотропии [37], определяемым как $A^U = 5G_V/G_R + B_V/B_R$ — 6, при этом для упругоизотропных кристаллов $A^U = 0$; отклонения A^U от нуля определяют степень упругой анизотропии. В нашем случае расчеты показывают, что A^U (ReN₂(I)) = 23.7 > A^U (ReN₂(II)) = 2.4, т.е. полиморф ReN₂(I) обладает существенно большей упругой анизотропией, чем ReN₂(II).

Одним из важнейших параметров механического поведения материалов является их микротвердость. Хотя микротвердость (которую измеряют при вдавливании индентора в материал) является сложным макроскопическим параметром, который описывает пластическую деформацию образца, и зависит от конкретных характеристик образца, таких как размеры и морфология зерна, концентрация и типы примесей и дефектов, а также от числа циклов нагружения, температуры и ряда других факторов [38], в последние годы предложен ряд эмпирических коррелятивных зависимостей микротвердости (по Виккерсу, H_V) от таких параметров упругости, как модули сжатия, сдвига, Юнга, и ряда других [39]. В настоящей работе мы воспользуемся простой корреляцией $H_{\rm V} = 0.0608Y$ [40], в рамках которой получаем $H_V(\text{ReN}_2(I)) = 9.9 \text{ GPa} < H_V(\text{ReN}_2(II)) = 21.5 \text{ GPa}.$

3.3. Электронная структура и магнитные свойства. На рис. 2 приведены полные плотности состояний полиморфов $\operatorname{ReN}_2(I-IV)$, полученные в рамках немагнитных расчетов. Можно видеть, что основное различие электронных полиморфов $\operatorname{ReN}_2(I,II)$ и $\operatorname{ReN}_2(III,IV)$ заключается в существенном (на 4.5–5.0 eV) уширении валентной зоны последних за счет значительного расщепления связывающих и антисвязывающих состояний димеров N_2 . Вместе с тем все полиморфы имеют ненулевую плотность состояний на уровне Ферми ($N(E_F)$) и будут проявлять металлоподобные свойства.

В результате для этих фаз не исключена возможность возникновения магнитного состояния. Для выяснения возможных эффектов намагничивания проведены расчеты ReN₂(I–IV) в спин-поляризованном варианте в предположении ферромагнитного типа упорядочения спинов. Получено, что основным состоянием полиморфов ReN₂(II,III,IV) является немагнитное.

Наоборот, для полиморфа $ReN_2(I)$ более энергетически выгодным оказывается магнитное решение: разность полных энергий для ферромагнитного и немагнитного состояний составляет около -0.02 eV на формульную единицу. Наиболее примечательным является тот факт, что максимальное спиновое расщепление испытывают

Рис. 2. Полные плотности состояний полиморфов ReN₂(I-IV). Немагнитный расчет.

Рис. 3. Спиновые плотности состояний полиморфа ReN₂(I).

N 2*p*-состояния (рис 3), в результате на атомах азота образуются локальные магнитные моменты $\sim 0.4 \,\mu_{\rm B}$, тогда как на атомах рения магнитные моменты на порядок меньше. Таким образом, ${\rm ReN}_2({\rm I})$ относится к семейству так называемых d^0 -магнетиков, где магнитные эффекты формируются без участия d^n -орбиталей [41,42].

4. Заключение

С использованием *ab initio* расчетов выполнен сравнительный анализ структурных, электронных, механических, магнитных свойств и относительной стабильности четырех возможных полиморфных модификаций динитрида рения, неметаллическая решетка которых включает как одиночные атомы азота, так и димеры N₂.

Установлено, что присутствие в структуре ReN_2 димеров N_2 способствует росту энергетической стабильности соответствующих полиморфов, но приводит к их механической неустойчивости. Среди механически устойчивых полиморфов $ReN_2(I)$ является пластичным материалом с высокой упругой анизотропией и малой микротвердостью. Наоборот, $ReN_2(II)$ будет вести себя как хрупкий материал и иметь повышенную микротвердость.

Все рассмотренные полиморфы имеют ненулевую плотность состояний на уровне Ферми и будут проявлять металлоподобные свойства.

Расчеты предсказывают, что $\text{ReN}_2(I)$ является слабым d^0 -магнетиком (с магнитными моментами на атомах азота $\leq 0.4 \,\mu_{\rm B}$), где формирование магнитного состояния происходит за счет спинового расщепления N 2*p*-состояний. Насколько известно авторам, $\text{ReN}_2(I)$ является первым d^0 -магнетиком среди всех бездефектных нитридов переходных металлов.

Список литературы

- [1] Х.Дж. Гольдшмидт. Фазы внедрения. Мир, М. (1971). 424 с.
- [2] Л. Тот. Карбиды и нитриды переходных металлов. Мир, М. (1974). 296 с.

- [3] А.Л. Ивановский, В.П. Жуков, В.А. Губанов. Электронное строение тугоплавких карбидов и нитридов переходных металлов. Наука, М. (1990). 220 с.
- [4] The physics and chemistry of carbides, nitrides and borides. NATO ASI Ser. E. V. 185/Ed. R. Freer. Kluwer, Dordrecht (1990). 733 p.
- [5] The chemistry of transition metal carbides and nitrides / Ed. S.T. Oyama. Blacklie Academic & Professional, London (1996). 533 p.
- [6] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, R.L. Hemley. Nature Mater. 3, 294 (2004).
- [7] S. Ono, T. Kikegawa, Y. Ohishi. Solid State Commun. 133, 55 (2005).
- [8] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson. Science 311, 1275 (2006).
- [9] A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao. Phys. Rev. Lett. 96, 155 501 (2006).
- [10] M.G. Moreno-Armenta, J. Diaz, A. Martinez-Ruiz, G. Soto. J. Phys. Chem. Solids 68, 1989 (2007).
- [11] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, V.B. Prakapenka. J. Mater. Res. 23, 1 (2008).
- [12] А.Л. Ивановский. Успехи химии 78, 328 (2009).
- [13] A. Friedrich, B. Winkler, L. Bayarjargal, W. Morgenroth, E.A. Juarez-Arellano, V. Milman, K. Refson, M. Kunz, K. Chen. Phys. Rev. Lett. 105, 085 504 (2010).
- [14] V.V. Bannikov, I.R. Shein, N.I. Medvedeva, A.L. Ivanovskii. J. Magn. Magn. Mater. **321**, 3624 (2009).
- [15] V.V. Bannikov, I.R. Shein, A.L. Ivanovskii. Phys. Status Solidi B 248, 1369 (2011).
- [16] X.F. Hao, Y.H. Xu, Z.P. Li, L. Wang, F.M. Gao, D.B. Xiao. Phys. Status Solidi B 248, 2107 (2011).
- [17] Y.C. Liang, X. Yuan, W.Q. Zhang. J. Appl. Phys. 109, 053 501 (2011).
- [18] А.Л. Ивановский. Сверхтвердые материалы 2, 3 (2012).
- [19] Y.L. Li, Z. Zeng. Solid State Commun. 149, 1591 (2009).
- [20] A.T.A. Meenaatci, R. Rajeswarapalanichamy, K. Iyakutti. Physica B 406, 3303 (2011).
- [21] E. Zhao, Z. Wu. Comput. Mater. Sci. 44, 531 (2008).
- [22] Y. Li, Z. Zeng. Chem. Phys. Lett. 474, 93 (2009).
- [23] J. Zhou, Z. Sun, R. Ahuja. J. Alloys Comp. 472, 425 (2009).
- [24] X.P. Du, Y.X. Wang, V.C. Lo. Phys. Lett. A 374, 2569 (2010).
- [25] G. Soto. Comput. Mater. Sci. 61, 1 (2012).
- [26] Y. Wang, T. Yao, J.L. Yao, J. Zhang, H. Gou. Phys. Chem. Chem. Phys. 15, 183 (2013).
- [27] S. Aydin, O.Y. Ciftci, A. Tatar. J. Mater. Res. 27, 1705 (2012).
- [28] F.Kawamura, H. Yusa, T. Taniguchi. Appl. Phys. Lett. 100, 251 910 (2012).
- [29] G. Kresse, J. Hafner. Phys. Rev. B 47, 558 (1993).
- [30] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [31] G. Kresse, J. Joubert. Phys. Rev. B 59, 1758 (1999).
- [32] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [33] A.L. Ivanovskii. Progr. Mater. Sci. 57, 184 (2012).
- [34] Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng. Phys. Rev. B 76, 054 115 (2007).
- [35] И.Р. Шеин, В.С. Кийко, Ю.Н. Макурин, М.А. Горбунова, А.Л. Ивановский. ФТТ 49, 1015 (2007).
- [36] S.F. Pugh. Phil. Mag. 45, 823 (1953).

- [37] S.I. Ranganathan, M. Ostoja-Starzewshi. Phys. Rev. Lett. 101, 055 504 (2008).
- [38] J.J. Gilman. Chemistry and physics of mechanical hardness. Wiley Ser. on Proc. of engineering materials. John Wiley & Sons, Hoboken, N.J. (2009). 185 p.
- [39] A.L. Ivanovskii. Int. J. Refract. Metals Hard. Mater. 36, 179 (2013).
- [40] X. Jiang, J. Zhao, A. Wu, Y. Bai, X.J. Jiang. J. Phys.: Cond. Matter 22, 315 503 (2010).
- [41] J.M.D. Coey. Solid State Sci. 7, 660 (2005).
- [42] А.Л. Ивановский. УФН 177, 1083 (2007).