06 Параметры границы раздела и механизмы протекания тока в структурах металл—туннельно-тонкий фторид церия (неодима, диспрозия)—кремний

© М.Б. Шалимова, Н.В. Щербакова

Самарский государственный университет E-mail: rozhkov@ssu.samara.ru

Поступило в Редакцию 1 июля 2004 г.

Представлены результаты исследования электрофизических характеристик структур металл-туннельный диэлектрик-полупроводник. В качестве диэлектрика использовались фториды диспрозия, церия, неодима. Определены параметры границы раздела, такие как энергетическое распределение плотности поверхностных состояний, значение поверхностного потенциала. Исследованы особенности процессов токопрохождения в данных структурах.

Необходимость использования новых изолирующих материалов с высокой диэлектрической проницаемостью приводит к поиску и исследованию новых перспективных диэлектриков, обладающих разнообразными функциональными свойствами. К таким диэлектрикам относятся фториды редкоземельных элементов, которые характеризуются значениями диэлектрической проницаемости $\varepsilon_D = 8 \div 14$ и удельного сопротивления $\rho = 6 \cdot 10^{12} \div 10^{13} \Omega \cdot \text{сm}$, обладают химической, термической и радиационной стойкостью. В настоящей работе исследовались параметры границы раздела кремния с фторидами редкоземельных элементов и определялись механизмы токопрохождения в МДП (металл-диэлектрик-пролупроводник)-диоде.

МДП-диоды получались путем электроформовки МДП-структур с толстым диэлектриком. В основе метода электроформовки лежит явление переключения проводимости, которое наблюдается в пленках фторидов редкоземельных элементов под действием сильных электрических полей [1]. В течение этого процесса в диэлектрической пленке создается локальная негомогенная область с высокой проводимостью площадью $A \sim 3 \div 80 \, \mu m^2$.

27

Экспериментальные образцы изготавливались на подложке монокристаллического кремния п- или р-типа проводимости с удельным сопротивлением $5\Omega \cdot cm$ и $4.5\Omega \cdot cm$ соответственно. На подложку методом термического распыления в вакууме наносился слой фторида редкоземельного элемента толщиной $d = 0.3 \div 0.4 \,\mu{\rm m}$. На фторид редкоземельного элемента наносились алюминиевые контакты диаметром 0.5 ÷ 0.7 mm. Под действием электрического поля напряженностью $\sim 10^8 \, \text{V/m}$ в однородной исходной пленке создается проводящий канал, который в основном состоит из металлической фазы. При этом, как показали исследования, в области канала проводимости на границе с кремнием формируется слой туннельного диэлектрика толщиной $d_t = 1 \div 3$ nm. Слой туннельного диэлектрика образуется при достаточно большой величине нагрузочного сопротивления $(R > 1.5 \,\mathrm{k}\Omega)$, включенного в цепь последовательно с образцом. Таким методом получались структуры A1-CeF₃-Si, A1-DyF₃-Si, Al-NdF₃-Si.

Исследования показали, что при отсутствии внешнего приложенного напряжения на поверхности полупроводника реализуется состояние обеднения основными носителями заряда для всех исследованных структур. При этом в области прямого смещения на вольт-амперных характеристиках выделяются три характерные области.

1) Область ограничения тока через структуру полупроводником, когда напряжение, подаваемое на структуру, $U < \varphi_{s0}$. При этом ток через структуру определяется процессами надбарьерной эмиссии основных носителей из полупроводника в металл с экспоненциальной зависимостью тока от приложенного напряжения согласно уравнению

$$J = \overline{D_{n,p}} \cdot A^* \cdot T^2 \cdot A \cdot \exp\left(-\frac{q\Phi_b}{kT}\right) \cdot \exp\left(\frac{qU}{nkT}\right),\tag{1}$$

<u>где</u> $\Phi_b = \varphi_{s0} + (E_c - F)$ — для полупроводника *n*-типа проводимости, $\overline{D_{n,p}}$ — коэффициент туннельной прозрачности электронов (дырок), A^* — постоянная Ричардсона, A — площадь структуры, n — коэффициент неидеальности, k — постоянная Больцмана, T — абсолютная температура, q — заряд электрона, E_c — энергия дна зоны проводимости, F — энергия уровня Ферми полупроводника.

В данной работе предполагается постоянство коэффициента туннельной прозрачности диэлектрика в области используемых напряже-

Рис. 1. Аппроксимация вольт-амперной характеристики экспоненциальной и квадратичной зависимостями для различных структур: $I - Al-DyF_3-nSi$, $2 - Al-NdF_3-nSi$, $3 - Al-CeF_3-nSi$. Пунктирные линии маркируют приблизительные границы характерных областей I–II–III для структуры с CeF₃.

ний. На рис. 1 показаны экспериментальные вольт-амперные характеристики при прямом смещении, которые аппроксимируются экспоненциальной зависимостью в области I.

2) Область ограничения тока туннельной проводимостью диэлектрика в режиме $\varphi_{s0} < U < 1.2$ V. Прямые участки вольт-амперной характеристики в этой области определяются доминирующим прямым туннелированием основных носителей из полупроводника в металл и описываются зависимостью

$$J \cong B \cdot (U - \varphi_{s0})^2, \tag{2}$$

где B — постоянная. Наблюдаемая квадратичная зависимость тока через структуру от суммарного напряжения $(U-\varphi_{s0})$ связана с тем, что плотность туннельного тока, протекающего между металлом и зоной проводимости полупроводника в модели невзаимодействующих

электронов, может быть записана в виде [2]:

$$j_{nT} = \frac{1}{4} q V_n \overline{D_n} N_c \left[F_1(y_g - y_s) - F_1(-y_s) \right],$$
(3)

где $y_g = qU/kT$, $y_s = qU_s/kT$ — безразмерное напряжение на затворе структуры и поверхностный потенциал; V_n — средняя тепловая скорость электронов; N_c — эффективная плотность состояний в зоне проводимости полупроводника; $F_1(y)$ — интеграл Ферми. В области смещений, таких, что $|y_g - y_s| > 3$, интегралы в (3) могут быть заменены многочленом [3] и

$$j_{nT} = \frac{1}{4} q V_n \overline{D_n} N_c \frac{(y_g - y_s)^2}{2}.$$
 (4)

Выражения (3), (4) справедливы, когда доминирующим механизмом протекания тока через структуру как для электронов, так и для дырок является туннельный механизм.

На рис. 1 представлены вольт-амперные характеристики структур в координатах \sqrt{J} от *U*. Экстраполяция данных прямых (область II) к нулевому току дает значение поверхностного потенциала φ_{s0} .

3) При U > 1.2 V прямой ток в основном ограничивается сопротивлением растекания кремниевой подложки.

Зависимость поверхностного потенциала от напряжения для $U \leq U_0 - 2kT/q$ (U_0 — напряжение плоских зон) рассчитывалась по формуле

$$\varphi_s(U) = \frac{kT}{q} \cdot \ln\left[\frac{A^* \cdot A \cdot T^2}{J(U)}\right] - \frac{E_c - F}{q}.$$
(5)

Расчеты показали, что φ_s и U для большинства исследованных МДП-диодов связаны прямо пропорционально зависимостью, при этом выполняется соотношение [4]

$$|\varphi_s(U)| \cong \frac{U_0 - U}{b} = |\varphi_{s0}| - \frac{U}{b}.$$
(6)

$$b = 1 + \frac{q^2 N_t^0}{C_D},$$
 (7)

где N_t — плотность однозарядных поверхностных состояний, $C_D = = \frac{\varepsilon_0 \varepsilon_D}{d}$ — емкость диэлектрика единичной площади.

Значения параметров МДП-диодов с различными фторидами редкоземельных элементов

Структура	Плотность поверхностных состояний N_t , $10^{11} {\rm eV}^{-1} \cdot {\rm cm}^{-2}$	Поверхностный потенциал φ_{s0} , V
$NdF_3 - nSi$ $NdF_3 - pSi$ $CeF_3 - nSi$	$\begin{array}{c} 1.14 \pm 0.35 \\ 1.84 \pm 0.50 \\ 2.25 \pm 0.64 \end{array}$	$0.31 \pm 0.03 \\ 0.35 \pm 0.01 \\ 0.43 \pm 0.05$
CeF ₃ - <i>p</i> Si DyF ₃ - <i>n</i> Si DyF ₃ - <i>p</i> Si	$egin{array}{c} 10.7 \pm 0.26 \ 21.4 \pm 1.56 \ 2.78 \pm 0.67 \end{array}$	$0.29 \pm 0.05 \\ 0.11 \pm 0.05 \\ 0.37 \pm 0.01$

В данном случае условием прямо пропорциональной зависимости является $N_t = N_t^0 = \text{const}$, т. е. поверхностные состояния распределены с постоянной плотностью в заданном интервале энергий.

Из соотношения (6) следует, что экстраполяция данных прямых до U = 0 позволяет получить значение поверхностного потенциала φ_{s0} . Сравнение данной величины φ_{s0} со значением, полученным с использованием формулы (2), показало, что оба метода дают значения поверхностного потенциала φ_{s0} , совпадающие в пределах ошибки измерения. Значения φ_{s0} представлены в таблице.

Для некоторых образцов обнаруживалось наличие на экспериментальных вольт-амперных характеристиках туннельных МДП-диодов участков с нелинейной зависимостью $\ln J$ от U и, следовательно, нелинейной зависимостью φ_s от U. В этом случае выражение (6) справедливо только в узком интервале напряжений, в котором уровень Ферми на поверхности полупроводника пересекает поверхностные состояния с постоянной плотностью.

Из (6) следует, что

$$\frac{d\varphi_s}{dU} = -b^{-1}.\tag{8}$$

С учетом выражения (7) будем иметь

$$N_t = \frac{\varepsilon_0 \varepsilon_D}{q^2 d} \bigg\{ \frac{q}{kT} \bigg[\frac{d(\ln J)}{dU} \bigg]^{-1} - 1 \bigg\}.$$
(9)

Значения N_t , рассчитанные по формуле (9) для случая, когда поверхностные состояния распределены с постоянной плотностью, представлены в таблице.

Рис. 2. Распределение плотности поверхностных состояний по энергиям в запрещенной зоне кремния *n*-типа проводимости (*a*) и *p*-типа проводимости (*b*), покрытого слоем фторида редкоземельного элемента: $1 - \text{DyF}_3$; $2 - \text{NdF}_3$; $3 - \text{CeF}_3$.

На рис. 2, *а*, *b* представлены кривые распределения плотности поверхностных состояний по энергиям в запрещенной зоне полупроводника, рассчитанные по формуле (9). В этом случае на поверхности кремния, покрытой слоем фторида редкоземельного элемента, реализуется распределение N_t по энергиям с минимумом вблизи середины запрещенной зоны.

Для поверхности кремния, покрытой слоем фторида неодима, получено наименьшее значение плотности поверхностных состояний. Это

согласуется с результатами работы [5], в которой было обнаружено пассивирующее действие диэлектрических слоев фторида неодима.

Результаты работы указывают на возможность практического получения и исследования толстых и туннельно-тонких диэлектрических слоев фторидов редкоземельных элементов, изготовленных в одном технологическом цикле на одной подложке. Это позволяет определить такие параметры границы раздела, как энергетическое распределение плотности поверхностных состояний, значение поверхностных состояний – 10¹¹ eV⁻¹ · cm⁻² обеспечивает возможность использования данных слоев для пассивации поверхности кремния.

Список литературы

- [1] Рожков В.А., Шалимова М.Б. // ФТП. 1998. Т. 32. № 11. С. 1349–1353.
- [2] Туннельные явления в твердых телах / Под ред. В.И. Переля. М.: Мир, 1973. 421 с.
- [3] Блекмор Д. Статистика электронов в полупроводниках. М.: Мир, 1964. 379 с.
- [4] Гаман В.И. Физика полупроводниковых приборов. Томск: Изд-во НТЛ, 2000. 426 с.
- [5] Рожков В.А., Петров А.И., Шалимова М.Б. // Письма в ЖТФ. 1993. Т. 19.
 В. 19. С. 10–14.