06 Реакция электросопротивления пленок (40 nm)La_{0.67}Ca_{0.33}MnO₃ на увеличение рассогласования в параметрах кристаллических решеток с подложкой

© Ю.А. Бойков, В.А. Данилов

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: yu.boikov@mail.ioffe.ru

Поступило в Редакцию 14 июля 2004 г.

Исследованы структура и электросопротивление ρ пленок La_{0.67}Ca_{0.33}MnO₃, выращенных когерентно на пластинах (001)La_{0.29}Sr_{0.71}Al_{0.65}Ta_{0.35}O₃, покрытых эпитаксиальной прослойкой из титаната стронция толщиной 7 или 70 nm. С увеличением эффективного рассогласования в параметрах кристаллических решеток манганитной пленки и подложки наблюдалось резкое увеличение ρ , а максимум на зависимости $\rho(T)$ сдвигался (~40 K) в сторону низких температур. При T < 150 K температурные зависимости электропроводности пленок La_{0.67}Ca_{0.33}MnO₃ следовали соотношению $\rho \sim \rho_1 \cdot T^{4.5}$, причем коэффициент ρ_1 убывал как с увеличением напряженности магнитного поля, так и с уменьшением рассогласования в параметрах кристаллических решеток манганитной пленки и подложки.

Перовскито-подобные манганиты La_{0.67}(Ca,Sr)_{0.33}MnO₃ перспективны для использования в головках для считывания информации с магнитных дисков [1], в ячейках памяти [2], в чувствительных элементах детекторов ИК-излучения [3] и т.д. Для применения в реальных устройствах указанные твердые растворы должны быть получены в виде тонких слоев, сформированных на поверхности подложек из материалов, используемых в микроэлектронике. Тонкие пленки La_{0.67}(Ca,Sr)_{0.33}MnO₃, выращенные на подложках с существенным рассогласованием *m* в параметрах кристаллических решеток и температурных коэффициентов линейного расширения β , оказываются механически напряженными ($m = (a_s - a_L)/a_s$, где a_s и a_L — параметры кристаллической решетки подложки и пленки соответственно).

Несмотря на большое количество работ [4-6], посвященных исследованию структуры и свойств гетероэпитаксиальных пленок

73

 $La_{0.67}(Ca,Sr)_{0.33}MnO_3$, механизмы, ответственные за возрастание их электросопротивления ρ с увеличением *m*, не детализированы.

В данной работе представлены результаты исследования температурных и полевых (магнитное поле) зависимостей ρ пленок La_{0.67}Ca_{0.33}MnO₃ (LCMO) толщиной d = 40 nm, когерентно выращенных на подложках с различным положительным *m*.

Для формирования пленок LCMO был использован метод лазерного испарения (ComPex 205, KrF, $\lambda = 248$ nm, $\tau = 30$ ns). Условия роста манганитных пленок описаны в [4,7]. В качестве подложек использовались пластины (001)La_{0.29}Sr_{0.71}Al_{0.65}Ta_{0.35}O₃ (LSATO) с толщиной $d_1 = 500 \,\mu$ m. Чтобы вырастить пленки (40 nm)LCMO на подложках с различными значениями *m*, но с одинаковой величиной β , на поверхности LSATO непосредственно перед осаждением пленки LCMO формировалась прослойка SrTiO₃ (STO) толщиной $d_2 = 7$ или 70 nm. Прослойка STO выращивалась методом лазерного испарения при тех же условиях, что и манганитная пленка. Поскольку $d_1 \gg d_2$, температурный коэффициент линейного расширения комбинации STO/LSATO определялся соответствующим коэффициентом LSATO ($\beta \approx 10 \cdot 10^{-6} \, \text{K}^{-1}$) [8].

Структура прослойки из титаната стронция и пленки LCMO, сформированных на STO/LSATO, исследовалась с использованием рентгеновской дифракции (Philips X'pert MRD, $\omega/2\theta$ - и ϕ -сканы, кривые качания). Толщина выращенных слоев контролировалась по ширине сателлитных пиков Лауэ, которые четко прослеживались на полученных рентгеновских дифрактограммах (рис. 1). Чтобы оценить параметры кристаллической решетки в выращенных пленках в плоскости подложки и вдоль нормали к ее поверхности, $\omega/2\theta$ -сканы были визуализированы в условиях, когда падающий и отраженный рентгеновские пучки находились в плоскости, перпендикулярной (101) или (001)LSATO.

Сопротивление *R* пленок LCMO измерялось в конфигурации van der Pauw на постоянном токе, в магнитном поле ($\mu_0 H$ до 5 T) и без него. На поверхность манганитной пленки напылялись четыре серебряных контакта, расположенные на углах квадрата. Электросопротивление пленки LCMO рассчитывалось с использованием соотношения $\rho = R\pi d/\ln 2$ [9]. Направление магнитного поля было параллельно плоскости подложки.

Из полученных рентгеновских данных следует, что двухслойные гетероструктуры LCMO/STO были выращены эпитаксиально на поверхности (001)LSATO, причем плоскости (001) и направления [010]

Рис. 1. a — фрагмент рентгеновского скана (CuK_{$\alpha 1$}, $\omega/2\theta$) для гетероструктуры (40 nm)LCMO||(7 nm)STO||LSATO, полученный в условиях, когда плоскость, содержащая падающий и отраженный рентгеновские пучки, была ортогональна (001)LSATO. Стрелками показаны сателлитные пики Лауэ от манганитной пленки; * — пик (002)LSATO. b — фрагмент рентгеновского скана (CuK_{$\alpha 1$}, $\omega/2\theta$) для гетероструктуры (40 nm)LCMO||(70 nm)STO||LSATO, полученный в тех же условиях. Двойными стрелками показаны сателлитные пики Лауэ от прослойки STO.

в LCMO и STO были параллельны (001) и [010] LSATO. Фрагменты рентгеновских дифрактограмм, полученных для гетероструктур (40 nm)LCMO/(7 nm)STO/LSATO и (40 nm)LCMO/(70 nm)STO/LSATO, приведены на рис. 1. Наличие на дифрактограммах сателлитных пиков

	Прослойка STO				Манганитная пленка LCMO				
N	<i>d</i> ₂ ,	a_{\perp} ,	a_{\parallel} ,	V_{eff} ,	<i>d</i> ,	a_{\perp} ,	a_{\parallel} ,	V_{eff} ,	FWHM
14	nm	Å	Å	Å ³	nm	Å	Å	Å ³	deg.
1	7	3.94*	3.87*	59.01	40	3.833	3.868	57.40	0.08
2	70	3.923	3.887	59.27	40	3.817	3.888	57.57	0.10

Параметры слоев в выращенных гетероструктурах (40 mm)LCMO/STO/ (001)LSATO

Погрешность определения параметров a_{\perp} и a_{\parallel} в пленках LCMO и STO с толщиной больше 35 nm составляла ± 0.003 Å. * — погрешность определения параметра составляла ± 0.01 Å.

Лауэ указывает на однородность пленок, составляющих гетероструктуру STO/LCMO, по толщине. Рентгеновские сканы для пленок LCMO, выращенных на подложке (001)LSATO (без буферной прослойки), приведены в [4]. Параметры элементарной ячейки в манганитной пленке и в промежуточной прослойке STO, измеренные в плоскости подложки a_{\parallel} и вдоль нормали к ее поверхности a_{\parallel} , приведены в таблице. Поскольку параметр кубической элементарной ячейки монокристаллов титаната стронция (a = 3.905 Å [10]) больше параметра псевдокубической элементарной ячейки LSATO (a = 3.868 Å [8]), прослойка STO, выращенная на (001)LSATO, находилась под действием сжимающих в плоскости подложки механических напряжений. Параметр a_{\parallel} в прослойке STO толщиной 7 nm был меньше соответствующего параметра в прослойке титаната стронция с толщиной 70 nm (см. таблицу). С увеличением d₂ механические напряжения в прослойке STO частично релаксировали. Объем элементарной ячейки $V_{eff} = (a_{\perp} \cdot a_{\parallel}^2)$ в прослойке STO, упруго напряженной подложкой (двухосное сжатие), был меньше соответствующего значения для монокристаллов титаната стронция ($\sim 59.55 \text{ Å}^3$ [10]) (см. таблицу).

Эффективное положительное рассогласование m в параметрах кристаллических решеток пленки LCMO (псевдокубическая ячейка, a = 3.858 Å [11]) и подложки LSATO, покрытой прослойкой STO, увеличивалось с 0.3% при толщине прослойки STO в 7 nm до 0.7% при толщине прослойки в 70 nm. Возрастание m с увеличением d_2 обусловило рост двухосных растягивающих в плоскости подложки

механических напряжений в манганитной пленке. Это явилось причиной уменьшения параметра a_{\perp} в манганитной пленке в гетероструктуре (40 nm)LCMO/(70 nm)STO/LSATO по сравнению с его величиной в пленке LCMO в гетероструктуре (40 nm)LCMO/(7 nm)STO/LSATO (см. таблицу). Уменьшение a_{\perp} в манганитной пленке с увеличением толщины прослойки STO в гетероструктуре (40 nm)LCMO/STO/LSATO четко прослеживается по относительному сдвигу пика (002)LCMO на дифрактограммах, приведенных на рис. 1. Параметр a_{\parallel} в пленках (40 nm)LCMO, выращенных на поверхности (70 nm)STO/LSATO и (7 nm)STO/LSATO, совпадал с соответствующим параметром в прослойке из титаната стронция (см. таблицу). Таким образом, исследованные манганитные пленки LCMO были выращены когерентно на поверхности STO/LSATO.

Следует отметить, что растягивающие двухосные механические напряжения, действующие в процессе зародышеобразования и роста манганитной пленки, способствуют увеличению объема ее элементарной ячейки (см. таблицу). Механизмы, ответственные за изменение V_{eff} в двухосно механически напряженных пленках LCMO, рассмотрены нами в [5,7].

Ширина кривой качания FWHM = 0.1 deg. ($\omega - 2\theta$), измеренная на половине высоты для рентгеновского пика (002)LCMO от гетероструктуры (40 mn)LCMO/(70 nm)/LSATO, примерно на 20% превышала соответствующее значение, полученное в случае гетероструктуры (40 nm)LCMO/(7 nm)/LSATO (см. таблицу).

Температурные зависимости ρ для пленок (40 nm)LCMO, выращенных на (7 nm)STO/LSATO и (70 nm)STO/LSATO, приведены на рис. 2. Температура $T_M \approx 260$ K, при которой наблюдался максимум на зависимости $\rho(T)$ для пленки (40 nm)LCMO/(7 nm)STO/LSATO, практически совпадала с соответствующим значением для объемных стехиометрических образцов и термообработанных в кислороде эпитаксиальных пленок LCMO [4]. Увеличение эффективного рассогласования в параметрах кристаллических решеток манганитной пленки и STO/LSATO приводило не только к росту абсолютных значений ρ , но и к сдвигу максимума на зависимости $\rho(T)$ в сторону низких температур (рис. 2). Данный факт связан с обеднением кислородом пленок, сформированных в условиях двухосных растягивающих механических напряжений [7]. Высокая плотность вакансий кислорода в объеме манганитной пленки способствует уменьшению относительной концентрации ионов Mn⁺⁴ и

Рис. 2. Температурные зависимости электросопротивления ρ пленок (40 nm)LCMO, выращенных на (70 nm)STO/LSATO (1, 2) и (7 nm)STO/ LSATO (3, 4). 1–3 — $\mu_0 H = 0$; 2, 4 — $\mu_0 H = 1$ T. На вставке показаны температурные зависимости магнетосопротивления *MR* пленок (40 nm)LCMO, выращенных на (7 nm)STO/LSATO (1) и (70 nm)STO/LSATO (2).

усиливает разброс в эффективной длине связи между ионами марганца и кислорода. Оба из указанных механизмов приводят к возрастанию ρ и к понижению температуры ферромагнитного упорядочения спинов на ионах марганца в пленке LCMO.

Резкое падение ρ манганитных пленок с понижением температуры в интервале $T_M - 200$ К связано с увеличением плотности и размеров высокопроводящих ферромагнитных "каналов протекания" в их объеме и с уменьшением относительной разориентации спинов на ионах марганца. При $T \ll T_M$ основная часть объема пленки LCMO находилась в ферромагнитном состоянии. Согласно [12], температурная зависимость электропроводности ферромагнитной фазы перовскито-подобных ман-

Рис. 3. Температурные зависимости (T < 200 K) электропроводности ρ пленки (40 nm)LCMO/(70 nm)STO/LSATO, измеренные при $\mu_0 H = 0$ (заполненные квадраты) и $\mu_0 H = 5$ T (пустые квадраты). Зависимости $\rho(T)$, рассчитанные для той же пленки с использованием соотношения (1), показаны сплошными линиями. На вставке показано изменение ρ_1 с увеличением H для пленок (40 nm)LCMO, выращенных на (70 nm)STO/LSATO (пустые треугольники) и (7 nm)STO/LSATO (заполненные треугольники). Коэффициент ρ_1 примерно линейно убывал с увеличением H (показано пунктиром).

ганитов должна следовать соотношению

$$\rho = \rho_0 + \rho_1 T^{4.5}, \tag{1}$$

где ρ_0 — постоянная, зависящая от концентрации дефектов в ферромагнетике, параметр ρ_1 зависит от степени разориентации электронных спинов на ионах марганца. На рис. 3 приведены температурные зависимости ρ для пленки (40 nm)LCMO/(70 nm)STO/LSATO, измеренные

при $\mu_0 H = 0$ (заполненные квадраты) и $\mu_0 H = 5 \text{ T}$ (пустые квадраты). На этом же рисунке показаны зависимости $\rho(T)$, рассчитанные с использованием соотношения (1) при $\rho_0 = 0.18 \text{ m}\Omega \cdot \text{cm} [\rho_0 = \rho(4.2 \text{ K})].$ Значения ρ_1 для исследованных пленок LCMO были определены из полученных зависимостей $\rho(T^{4.5})$ при $4.2 \,\mathrm{K} < T < 50 \,\mathrm{K}$. Параметр ρ_1 примерно линейно убывал с увеличением $\mu_0 H$ в интервале 0-5 T (см. вставку на рис. 3). Это обусловлено затуханием спиновых волн с увеличением напряженности магнитного поля. Аналогичные зависимости $\rho_1(H)$ наблюдались для эпитаксиальных пленок LCMO в [13]. На вставке на рис. 3 приведены также значения ρ_1 , определенные для пленки (40 nm)LCMO/(7 nm)STO/LSATO при $\mu_0 H = 0$ и 1 T (пленка формировалась в условиях слабых механических напряжений). Параметр ρ_1 для пленки LCMO, сформированной на (70 nm)STO/LSATO, примерно в три раза превосходил соответствующий параметр для манганитной пленки, выращенной на (7 nm)STO/LSATO. Относительно высокие значения ρ_1 для пленок LCMO, выращенных на STO/LSATO с большим рассогласованием в параметрах кристаллических решеток, указывают на то, что неоднородные механические напряжения, действующие в процессе формирования манганитного слоя, способствуют увеличению пространственной разориентации вектора спонтанной намагниченности в ферромагнитных доменах.

Температурные зависимости магнетосопротивления MR = $= [\rho(\mu_0 H = 1 \text{ T}) - \rho(\mu_0 H = 0)]/\rho(\mu_0 H = 0)$ пленок LCMO, выращенных на STO/LSATO ($d_2 = 7 \text{ nm}; 70 \text{ nm}$), приведены на вставке на рис. 2. Максимальные значения отрицательного *MR* при $\mu_0 H = 1$ T для манганитных пленок, выращенных на STO/LSATO при $d_2 = 7$ или 70 nm, достигали 60%. При увеличении рассогласования в параметрах кристаллических решеток LCMO и STO/LSATO с 0.3 до 0.7% пик на зависимости MR(T) для манганитной пленки сдвигался примерно на 40 К в сторону низких температур, а его ширина увеличивалась примерно вдвое (см. вставку на рис. 2). Увеличение ширины пика на кривой MR(T) для пленки (40 nm)LCMO/(70 nm)STO/LSATO может быть связано как с высокой и неоднородной плотностью вакансий кислорода в их объеме, так и с пространственной разориентацией спинов на ионах марганца в слое, выращенном на подложке со значительным т.

Финансовая поддержка для проведения данной работы была частично получена из проекта 9Б19 программы Президиума РАН "Низкоразмерные квантовые структуры" и проекта 04–02-16212 Российского фонда фундаментальных исследований.

- [1] *Tokura Y.* // Colossal Magnetoresistive Oxides / Ed. by Y. Tokura, Gordon and Breach Science Publishers. Amsterdam, The Netherlands, 2000. P. 2.
- [2] Parkin S.S.P., Roche K.P., Samant M.G., Rice P.M., Beyers R.B., Scheuerlein R.E., O'Sullivan E.J., Brown S.L., Bucchigano J., Abraham D.W., Lu Y, Rooks M., Trouilloud P.L., Wanner R.A., Gallagher W.J. // J. Appl. Phys. 1999. V. 85. N 8. P. 5828.
- [3] Goyal A., Rajeswari M., Shreekala R., Lofland S.E., Bhagat S.M., Boettcher T., Kwon C., Ramesh R., Venkatesan T. // Appl. Phys. Lett. 1997. V. 71. N 17. P. 2535.
- [4] Бойков Ю.А., Клаесон Т., Бойков А.Ю. // ЖТФ. 2001. Т. 71. В. 10. С. 54.
- [5] Бойков Ю.А., Клаесон Т., Бойков А.Ю. // ФТТ. 2003. Т. 45. В. 6. С. 1040.
- [6] Бойков Ю.А., Данилов В.А. // Письма в ЖТФ. 2004. Т. 30. В. 13. С. 12.
- [7] Boikov Yu.A., Gunnarsson R., Claeson T. // J. Appl. Phys. 2004 (in press).
- [8] Спецификация компании Кристек, поставившей подложки LSATO.
- [9] Kamins T.I. // J. Appl. Phys. 1971. V. 42. N 9. P. 4357.
- [10] Wyckoff R.W.G. // Crystal Structures. V. 2. 2nd Edition, Interscience, New York, 1964. P. 394.
- [11] Lu C.J., Wang Z.L., Kwon C., Jia Q.X. // J. Appl. Phys. 2000. V. 88. N 7. P. 4032.
- [12] Kubo K., Ohata N. // J. Phys. Soc. Jpn. 1972. V. 33. N 1. P. 21.
- [13] Snyder G.J., Hiskes R., DiCarolis S., Beasley M.R., Geballe T.H. // Phys. Rev. B. 1996. V. 53. N 21. P. 14434.