06;07

Поверхностно-барьерные переходы олово—диселенид индия и меди

© З.Д. Ковалюк, В.Б. Орлецкий, О.Н. Сидор, В.В. Нетяга

Институт проблем материаловедения НАН Украины, Черновицкое отделение, Черновцы E-mail:chimsp@unicom.cv.ua

Поступило в Редакцию 9 декабря 2003 г.

Методом термического испарения в вакууме олова были созданы фоточувствительные барьеры Шоттки на кристаллах CuInSe₂ *p*-типа проводимости. Обсуждаются температурные зависимости вольт-амперных характеристик. Показано, что в прямом смещении присутствуют как токи, ограниченные пространственным зарядом, так и термоэлектронная эмиссия. Для обратных смещений характерны генерационные токи в области пространственного заряда и мягкий пробой. Из спектральной зависимости фототока, приведенного к числу падающих фотонов, следует, что полученные структуры представляют собой широкополосные фотопреобразователи.

1. Введение. Тройное соединение CuInSe₂ широко используется в качестве поглощающего слоя в высокоэффективных солнечных элементах, поскольку величина запрещенной зоны этого полупроводника $(E_g \sim 1 \text{ eV})$ лежит в частотном интервале видимого солнечного излучения и CuInSe₂ характеризуется исключительно высоким коэффициентом поглощения $(\alpha \geqslant 10^5 \text{ cm}^{-1})$ [1–3]. Основой для исследуемых фотопреобразователей являются гетеропереходы, созданные в основном между CuInSe₂ и CdS, но простой и дешевой альтернативой им может быть структура металл—CuInSe₂.

Наш анализ литературных данных показывает отсутствие сообщений относительно исследования диодов Шоттки на основе CuInSe₂, где в качестве барьерного материала использовалось бы олово. Поэтому в настоящей работе сделана попытка получить структуру и изучить доминирующие механизмы токопереноса и основные фотоэлектрические параметры контакта металл—полупроводник Sn/p-CuInSe₂.

2. Экспериментальные результаты и их обсуждение. Кристаллы CuInSe₂ *p*-типа проводимости выращивались вертикальным методом

Бриджмена. Типичные значения концентрации и подвижности основных носителей заряда составляли при комнатной температуре $6.0 \times 10^{17} \, \mathrm{cm}^{-3}$ и $15 \, \mathrm{cm}^2 \cdot \mathrm{V}^{-1} \cdot \mathrm{s}^{-1}$ соответственно [4]. Из кристаллов вырезались пластинки со средними размерами $5 \times 5 \times 0.6 \, \mathrm{mm}$, которые механически полировались и травились. Слой олова (толщиной $\le 0.5 \, \mu \mathrm{m}$) наносился на поверхность полупроводника методом термического испарения в вакууме. Омический контакт создавался напылением золота.

Необходимо отметить, что напыление олова на $CuInSe_2$ n-типа проводимости не привело, как и следовало ожидать, к образованию выпрямляющего контакта. В этом случае олово можно рекомендовать как хороший омический материал и альтернативу более дорогому инлию.

Вольт-амперные характеристики (BAX) исследуемых структур в интервале температур $242-323~\rm K$ имеют ярко выраженный диодный тип (так, при напряжении $0.7~\rm V$ прямой ток превышает обратный в ~ 500 раз для комнатной температуры).

В интервале напряжений $0 < V < 0.09 \,\mathrm{V}$ (рис. 1, a, область I) кривые $\log J - \log V$ описываются законом Чайлда—Лангмюра [5]:

$$J = \frac{4\varepsilon\varepsilon_0}{9L^2} \left(\frac{2q}{m^*}\right)^{1/2} V^{3/2},\tag{1}$$

где ε — диэлектрическая константа, ε_0 — диэлектрическая проницаемость вакуума, m^* — эффективная масса носителей, L — толщина полупроводника в направлении протекания тока.

Для смещений $0.09 < V < 0.3\,\mathrm{V}$ (рис. 1, a, область II) характерно экспоненциальное возрастание тока по известному закону $J = J_s[\exp(qV/nkT)-1]$, где диодный коэффициент сохраняет значение $n\approx 1.6$ во всем диапазоне температур, что указывает на надбарьерное прохождение тока. Плотность тока насыщения J_s в зависимости от температуры находится в пределах $6.9\cdot 10^{-6}-2.9\cdot 10^{-4}\,\mathrm{A\cdot cm^{-2}}.$

Для напряжений $0.3 < V < 1\,\mathrm{V}$ (рис. 1, a, область III) ВАХ можно описать с помощью "ловушечного" квадратичного закона [5]:

$$J = \frac{9\varepsilon\varepsilon_0\theta\mu}{8L^3}V^2,\tag{2}$$

где μ — подвижность дырок; $\theta = (N_v/N_t) \exp(-E_t/kT)$ — отношение свободного заряда к заряду, захваченному на мелкие уровни прилипания; N_v — эффективная плотность состояний в валентной зоне;

Письма в ЖТФ, 2004, том 30, вып. 10

Рис. 1. Прямые (a) и обратные (b) ветви BAX-барьеров Шоттки Sn/p-CuInSe $_2$ при различных температурах, построенные в логарифмическом масштабе.

Письма в ЖТФ, 2004, том 30, вып. 10

Рис. 2. Спектральная зависимость относительной квантовой эффективности фотопреобразования η для барьеров Шоттки Sn/p-CuInSe₂. На вставке приведена нагрузочная кривая.

 N_t — концентрация уровней прилипания; E_t — положение ловушечного уровня над валентной зоной.

На обратных ветках ВАХ можно выделить два участка (рис. 1, b, области IV и V). Для небольших смещений V < -0.3 V токи пропорциональны $V^{0.6}$, что соответствует генерационным процессам в области пространственного заряда [6].

При больших обратных смещениях $(|V|>0.9\,\mathrm{V})$ ход веток BAX в первом приближении описывается выражением $J\sim V^{3.4\div4.4}$, что отвечает мягкому пробою.

При освещении барьеров Шоттки со стороны металла четко наблюдается фотовольтаический эффект. При падении света с плотностью потока излучения $100\,\mathrm{mW/cm^2}$ напряжение холостого хода V_{oc} достигало $0.26\,\mathrm{V}$, ток короткого замыкания J_{sc} равнялся $13.6\,\mathrm{mA/cm^2}$, а фактор заполнения был 0.36 (рис. 2, вставка). Максимальная вольтовая

Письма в ЖТФ, 2004, том 30, вып. 10

фоточувствительность при $293 \, \text{K}$ достигает $950 \, \text{V/W}$, а токовая — $16 \, \text{mA/W}$.

Типичная спектральная зависимость квантовой эффективности η для комнатной температуры приведена на рис. 2. Крутизна длинноволнового экспоненциального края фоточувствительности в полученных барьерах $S=60\,\mathrm{eV^{-1}}$ соответствует прямым оптическим переходам, а энергетическое положение излома при энергии фотонов $hv=1.04\,\mathrm{eV}$ согласуется со значением E_g для CuInSe $_2$ [2]. Тот факт, что при $hv>1\,\mathrm{eV}$ квантовая эффективность продолжает увеличиваться, позволяет сделать вывод о подавлении роли поверхностной рекомбинации. Это обеспечивает широкополосный эффект фотопреобразования, а значение полной ширины спектра $\eta(hv)$ на полувысоте $\delta_{1/2}$ равно не менее $2\,\mathrm{eV}$.

3. Выводы. Приведенные значения напряжения холостого хода и тока короткого замыкания, полученные при неоптимизированных толщинах металлической пленки и базового полупроводника, делают контакт Sn/p-CuInSe₂ перспективным в качестве фотопреобразователя для видимой и ближней инфракрасной области излучения. Можно предположить, что оптимизация позволит превзойти приводимые выше параметры, которые сейчас можно квалифицировать как достаточно хорошие с учетом начальной стадии исследования данных барьеров.

Список литературы

- [1] Современные проблемы полупроводниковой фотоэнергетики / Под ред. Коутса Т., Микина Дж. М.: Мир, 1988. 307 с.
- [2] Rockett A., Birkmire R.W. // J. Appl. Phys. 1991. V. 70. N 7. R81–R97.
- [3] Gabor A.M., Tuttle J.R., Albin D.S., Contreras M.A., Noufi R., Herman A.M. // Appl. Phys. Lett. 1994. V. 65. N 2. P. 198–200.
- [4] Горлей П.М., Ковалюк З.Д., Орлецкий В.Б. и др. // ПЖТФ. 2004. (В печати).
- [5] Ламперт Г., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973.416 с.
- [6] Jagannathan B., Anderson W.A. // Solar Energy Materials & Solar Cells. 1996. V. 44. P. 165–176.