05.4

Расчетное и экспериментальное моделирование работы высокотемпературного сверхпроводникового болометра с активной электротепловой обратной связью

© К.В. Иванов, И.А. Хребтов, А.Д. Ткаченко

Государственный оптический институт им. С.И. Вавилова E-mail: iakhrebtov@yahoo.com

Поступило в Редакцию 18 ноября 2003 г.

На основе предложенной модели проведено расчетное и экспериментальное моделирование работы высокотемпературного сверхпроводникового болометра мембранного типа в режиме с активной отрицательной электротепловой обратной связью. В указанном режиме появляется возможность управлять быстродействием болометра, что позволит расширить область его применения. Экспериментально исследовано влияние обратной связи на чувствительность, постоянную времени, шумы и обнаружительную способность болометра.

В некоторых случаях применение высокотемпературных сверхпроводниковых (ВТСП) болометров ограничено из-за невозможности одновременно обеспечить высокую чувствительность и требуемое быстродействие. Частично эта проблема может быть решена с помощью отрицательной электротепловой обратной связи (ОЭОС) в пассивном или активном режимах [1–5]. В активном режиме используется внешняя петля отрицательной обратной связи на основе электронного усилителя [5].

Механизм действия активной ОЭОС поясняется схемой, представленной на рис. 1. На входе блок-схемы поглощенная болометром оптическая мощность P_{opt} преобразуется через вольтовую чувствительность S_V^* в электрический сигнал, который с учетом коэффициента моста M_1 передается на предусилитель K. Чувствительность S_V^* — это чувствительность болометра без учета электротепловой обратной связи

57

Рис. 1. Блок-схема, поясняющая действие активной ОЭОС.

при коэффициенте поглощения $\varepsilon = 1$:

$$S_V^* = \frac{U_b \cdot \beta}{G} \frac{1}{1 + i\omega\tau_0},\tag{1}$$

где $\omega = 2\pi f$, f — частота, β — температурный коэффициент сопротивления ВТСП пленки, G — коэффициент теплопотерь, τ_0 — тепловая постоянная времени.

Для равноплечего моста Уинстона коэффициент $M_1 = 0.5$. Усиленный сигнал через делитель $F = R_I/(R_I + R_f)$, где R_f — сопротивление обратной связи (100 kΩ), передается на диагональ питания моста и далее через коэффициент деления моста M_2 на болометр в виде изменения джоулевой мощности ΔP . Изменение джоулевой мощности под действием активной ОЭОС стремится компенсировать действие P_{opt} на болометр, при этом $R_b \rightarrow R_I$.

Анализ блок-схемы (рис. 1) позволяет записать выражение для чувствительности болометра в режиме с активной ОЭОС при $\varepsilon = 1$:

$$S_V = \frac{1}{I_b} \cdot \frac{0.5L_0}{1 + 0.5L_0 \cdot F \cdot K} \cdot \frac{1}{1 + i\omega\tau_e},$$
(2)

где $L_0 = P\beta/G$ — коэффициент обратной связи, $P = I_b^2 \times R_b$ — джоулева мощность, выделяющаяся в болометре, I_b — ток смещения, K — коэффициент усиления, τ_e — эффективная постоянная времени, равная:

$$\tau_e = \frac{\tau_0}{1 + 0.5L_0 \cdot F \cdot K}.\tag{3}$$

59

Заменив мощность оптического излучения в блок-схеме (рис. 1) на мощность шума и осуществив необходимые преобразования, получим частотную зависимость напряжения шума, приведенного к выходу моста:

$$U_n = U_n^* \frac{(1 + \omega^2 \tau_0^2)^{1/2}}{\left((1 + 0.5 \cdot L_0 \cdot F \cdot K)^2 + \omega^2 \tau_0^2\right)^{1/2}},\tag{4}$$

где

$$U_n^* = \sqrt{U_j^2 + (0.5 \cdot U_{1/f})^2 + (0.5 \cdot U_{ph})^2},$$
(5)

где U_j — напряжение джонсоновского шума моста, $0.5 \cdot U_{1/f}$ и $0.5 \cdot U_{ph}$ — напряжения 1/f-шума и фотонного шума соответственно, приведенные к выходу моста без учета электротепловой обратной связи.

В эксперименте использовался GdBaCuO болометр на Si/Si₃N₄ мембране. Технология изготовления такого типа болометров была описана в работе [2]. Площадь приемника 0.85×0.85 mm, размер мембраны 2×2 mm, коэффициент поглощения $\varepsilon = 0.7$ (при длине волны излучения $\lambda = 3 \mu$ m). Другие параметры болометра представлены в таблице. Болометр исследовался в режиме с постоянным током смещения и в режиме с активной ОЭОС при включении в равноплечий мост Уинстона, охлаждаемый до температуры ≈ 80 K. Сопротивление болометра в рабочей точке $R_b = 4.7 \, \mathrm{k\Omega}$.

В режиме с активной ОЭОС по сравнению с режимом с постоянным током смещения наблюдается увеличение быстродействия, но уменьшение чувствительности S_V (рис. 2).

Для расчета частотных зависимостей вольтовой чувствительности в активном режиме использовалось выражение (2), а в режиме с постоянным током смещения известное выражение для чувствительности болометра в условиях положительной электротепловой обратной связи [2]. Полученные расчетные зависимости находятся в хорошем соответствии с экспериментальными результатами (рис. 2).

На низких частотах в режиме с активной ОЭОС наблюдается подавление напряжения шума (рис. 3). Расхождение расчетных и экспериментальных зависимостей может быть объяснено более сильной частотной и токовой зависимостью напряжения 1/f-шума при токах смещения, превышающих токи тепловой неустойчивости. На высоких частотах, когда ослабевает действие активной ОЭОС, измеренный шум близок к джонсоновскому шуму охлажденных сопротивлений моста.

Рис. 2. Экспериментальные (закрашенные маркеры) и расчетные частотные зависимости чувствительности в режимах с постоянным током смещения (No 2) и с активной ОЭОС (No 1). Пунктиром отмечены частоты среза ($f_{cut-off}$).

Подавление напряжения шума в режиме с активной ОЭОС тем не менее не дало увеличения обнаружительной способности болометра $D^*(D^* = A^{1/2}/NEP)$, где A — площадь приемника, $NEP = U_n/S_V^*$ — эквивалентная мощность шума) на частотах 1-10 Hz. Меньшую обнаружительную способность болометра в этом диапазоне в режиме активной ОЭОС можно объяснить ростом избыточного 1/f-шума и меньшим значением чувствительности болометра в этом режиме. На частотах f > 10 Hz чувствительность болометра в режиме с постоянным током смещения начинает уменьшаться, в то время как в режиме с активной ОЭОС уровень чувствительности сохраняется (рис. 2), в результате обнаружительная способность в активном режиме больше, чем в режиме с постоянным током смещения. Это стало возможным в том числе из-за низкого уровня джонсоновского шума охлажденных сопротивлений моста и использования предусилителя с низким уровнем шума.

61

Рис. 3. Экспериментальные (закрашенные маркеры) и расчетные частотные зависимости напряжения шума в режимах с постоянным током смещения (No 2) и с активной ОЭОС (No 1). I — джонсоновский шум сопротивления моста.

Необходимо отметить, что в режиме с активной ОЭОС часто используемый для характеристики болометров параметр $D^*/\tau_e^{1/2}$ на частоте отсечки $f_{cut-off}$ равен $8.3 \cdot 10^{10}$ сm \cdot Hz \cdot W⁻¹, что лучше, чем в токовом режиме, где этот параметр равен $6.1 \cdot 10^{10}$ сm \cdot Hz \cdot W⁻¹.

Экспериментальные значения D^* , NEP, S_V и U_n на частотах отсечки $f_{cut-off}$ представлены в таблице.

Кроме этого, экспериментально было получено, что в режиме с активной отрицательной электротепловой обратной связью по сравнению с токовым режимом как минимум в десять раз увеличивается допустимая мощность оптического излучения, при которой сохраняется линейность преобразования излучения.

Заключение. В режиме с активной ОЭОС охлаждение сопротивлений равноплечего моста Уинстона до рабочей температуры болометра ($\approx 80 \,\mathrm{K}$) позволило достичь обнаружительной способности болометра, равной $3.3 \cdot 10^9 \,\mathrm{cm} \cdot \mathrm{Hz}^{1/2}/\mathrm{W}$ при постоянной времени 1.6 ms.

Режим работы	Nº 1	Nº 2	
T_s , K	84.3	83.6	79.2
β , K ⁻¹	0.9	_	_
G, W/K		$1.3 \cdot 10^{-5}$	
$I_b, \ \mu A$	60	60	140
τ_e , ms	23	2.8	1.6
$f_{cut-off}$, Hz	7	56	100
S_V , V/W	3500	179	86
U_n , nV/Hz ^{1/2}	32	3.6	2.2
NEP, W/Hz ^{1/2}	$0.9 \cdot 10^{-11}$	$2.0 \cdot 10^{-11}$	$2.6 \cdot 10^{-11}$
D^* , cm · Hz ^{1/2} /W	$9.2 \cdot 10^{9}$	$4.3 \cdot 10^{9}$	$3.3\cdot10^9$
$D^*/\tau_e^{1/2}$, cm · Hz/W	$6.1\cdot10^{10}$	$8.0\cdot 10^{10}$	$8.3\cdot10^{10}$

Параметры болометров

Примечание: № 1 — режим с постоянным током смещения, № 2 — режим с активной ОЭОС, T_s — температура подложки. При измерении абсолютных значений чувствительности использовалось абсолютно черное тело с температурой полости T = 373 К ($\lambda_{\max} \approx 7 \, \mu$ m).

Полученное значение в ≈ 2.8 раза меньше, чем в режиме с постоянным током смещения, однако при этом достигнуто увеличение быстродействия в 14 раз. Полученные экспериментальные результаты достаточно хорошо описываются предложенной расчетной моделью.

Работа проводилась в рамках Госконтракта Минпромнауки РФ.

Авторы благодарят W. Michalke за помощь при подготовке болометров к экспериментам.

Список литературы

- Neff H., Laukemper J., Khrebtov I.A. et al. // Appl. Phys. Lett. 1995. V. 66. P. 2421–2423.
- [2] Nivelle M.J.M.E. de, Bruijn M.P., Vries R. de et al. // J. Appl. Phys. 1997. V. 82. P. 4719–4726.
- [3] Lee A.T., Gildemeister J.M., Lee S.-F., Richards P.L. // IEEE Trans. Appl. Supercond. 1997. V. 7. P. 2378–2381.
- [4] Neff H., Lima A.M.N., Deep G.S. et al. // Appl. Phys. Lett. 2000. V. 76. P. 640-642.
- [5] Хребтов И.А., Ткаченко А.Д., Иванов К.В., Штайнбайс Е. // Оптический журнал. 2001. Т. 68. С. 63-67.