04;09 Аналог эффекта полого катода в высокочастотном емкостном разряде низкого давления

© Д.А. Малик, К.Е. Орлов, А.С. Смирнов, Т.В. Черноизюмская

С.-Петербургский государственный политехнический университет E-mail: orlov@phtf.stu.neva.ru

Поступило в Редакцию 24 января 2003 г.

Исследованы процессы формирования потока ионов из плазмы высокочастотного емкостного разряда низкого давления при наличии углубления в поверхности электрода. При размерах полости порядка толщины приэлектродного слоя в спектре ионов, поступающих на поверхности полости, появляется пик ионов малых энергий. Механизм его возникновения аналогичен эффекту "полого катода" в разряде постоянного тока.

Высокочастотный емкостный (ВЧЕ) разряд широко применяется в плазменных технологиях осаждения пленок [1]. Однородность покрытия достигается за счет выравнивания параметров плазмы по всему объему разряда. Если обрабатываемая поверхность имеет развитый рельеф, то структура плазмы приэлектродных слоев в области неоднородности электрода существенно возмущается [2]. В работе проведено экспериментальное исследование формирования плазмы и приэлектродных слоев пространственного заряда ВЧЕ-разряда низкого давления в области неоднородности поверхности электрода с целью определения взаимосвязи между параметрами разряда в полости электрода и основном объем камеры.

Эксперименты проводились в установке, схематично изображенной на рис. 1, *а*. Разряд зажигался между двумя плоскими электродами; верхний электрод диаметром 22 cm соединен с источником ВЧ-напряжения 13.56 MHz. Нижний электрод заземлен и соединен с корпусом разрядной камеры. Вкладываемая в разряд ВЧ-мощность составляла $0.5 \div 100$ W. Давление рабочего газа (Ar) выбиралось в диапазоне $5 \div 30$ mTorr. Для анализа формирования приэлектродных слоев производились измерения спектров ионов, поступающих на поверхность

89

Рис. 1. Схема экспериментальной установки и иллюстрация структуры плазмы в области полости на электроде: *1* — разрядная камера, *2* — ВЧ-электрод, *3* — область квазинейтральной плазмы, *4* — заземленный электрод, *5* — многосеточный анализатор энергии с задерживающим полем, *6* — высоковакуумная камера.

заземленного электрода. Отбор ионов производится через отверстие диаметром 1 mm. В нижней, высоковакуумной, камере располагался многосеточный анализатор энергии заряженных частиц с задерживающим полем [3–5]. Энергетический спектр ионов получался путем дифференцирования кривых задержки. При этом общее разрешение по энергии в полученных спектрах оказывается порядка 1 eV. Конструкция установки позволяет производить измерения в двух режимах: плоский электрод и электрод с полостью. В последнем случае для имитации неоднородной поверхности на заземленный электрод устанавливалась

Рис. 2. Нормированные на величину общего потока функции распределения ионов по энергиям при различных значениях ВЧ-мощности, вкладываемой в разряд. Ar, p = 5 mTorr.

накладка с цилиндрическим отверстием диаметром 15 и глубиной 10 mm (рис. 1, *a*). При этом ось отверстия совпадала с центром отверстия для отбора ионов в анализатор энергии.

В первой серии экспериментов производились измерения спектров ионов, поступающих на поверхность плоского электрода. Полученные спектры имеют ярко выраженный максимум при энергиях, близких к максимальной энергии ионов в получаемом спектре. При увеличении вкладываемой в разряд мощности форма спектра существенно не изменяется, а максимальная энергия ионов монотонно возрастает изза увеличения падения напряжения в слое. Аналогичные результаты неоднократно обсуждались в работах различных авторов [5-7]. Во второй серии экспериментов измерялся поток ионов, поступающих на нижний торец полости. Эволюция спектров при изменении вкладываемой в разряд мощности существенно отличается от случая с плоским электродом и показана на рис. 2. При малых мощностях (рис. 2, а) спектр ионов соответствует плоскому случаю, однако при увеличении мощности формируется дополнительный низкоэнергетичный пик с энергией ионов $\sim 7-10 \,\mathrm{eV}$. Дальнейшее увеличение мощности (рис. 2, b) приводит к обратному перестроению спектра и к исчезновению особенностей в низкоэнергетичной части.

Для интерпретации полученных результатов рассмотрим механизм формирования приэлектродных слоев в ВЧЕ-разрядах низкого давления. В указанном диапазоне параметров выполняется условие $\omega_i \ll \omega \ll \omega_e$ (ω_i, ω_e) — ионная и электронная плазменная частота, ω — частота приложенного ВЧ-напряжения). В этом случае ионы образуют стационарный профиль концентрации, определяемый усредненным за период значением электрического поля, а движение электронов определяется мгновенным значением поля. В центральной части разряда формируется квазинейтральная плазма, а в приэлектродной области — слой положительного пространственного заряда. Толщина слоя пространственного заряда и падение напряжения в нем изменяются в течение периода ВЧ-поля от нуля до максимальных значений L и Umax. Форма спектра ионов, поступающих на поверхность плоского электрода, определяется соотношением межлу длиной свободного пробега ионов (λ) и максимальной толщиной приэлектродного слоя L. В бесстолкновительном случае $\lambda \gg L$ энергия ионов равна усредненному за период падению потенциала в слое $\langle U \rangle$ и спектр имеет выраженный максимум при энергиях $e\langle U\rangle$.

Экспериментальные спектры ионов для случая плоского электрода показывают, что движение ионов в приэлектродном слое является слабостолкновительным ($\lambda > L$). По экспоненциальному спаду полученных спектров в область малых энергий можно оценить величину отношения длины свободного пробега ионов к максимальной толщине слоя (λ/L). При давлении рабочего газа 5 mTorr указанное отношение порядка 4 ÷ 5. Зная сечение перезарядки ионов аргона [8], можно получить оценку для длины слоя $L \sim 0.5$ сm.

При наличии полостей на поверхности электрода формирование слоя, очевидно, определяется соотношением геометрических размеров неоднородности d и длиной приэлектродного слоя пространственного заряда L. При $d \ll 2L$ (толстый слой) или $d \gg 2L$ (тонкий слой), двумерное возмущение структуры приэлектродного слоя и квазинейтральной плазмы минимально. В промежуточном случае $d \sim 2L$ неоднородность поверхности электрода вносит существенное искажение в распределение потенциала в приграничной области. В условиях проведенных экспериментов d = 1.5 сm, а приведенная выше оценка для толщины слоя дает $2L \sim 1$ сm. Поэтому структура потенциала в области полости сильно отличается от плоской и формируется как нормальная

Наблюдаемые перестроения формы спектра ионов, поступающих на нижний торец полости (рис. 2), могут быть объяснены наличием вторичной электронной эмиссии с поверхности электрода и эффектами, аналогичными наблюдаемым в разрядах с "полым катодом" [9]. Электроны, эмитированные с поверхности полости, оказываются запертыми в радиально симметричном потенциале и покидают полость только после нескольких пролетов в радиальном направлении. Соответственно длины пробега вторичных электронов в двумерном слое многократно увеличиваются по сравнению с плоским случаем. При малых мощностях падение потенциала в слое недостаточно для ускорения вторичных электронов до потенциала ионизации атомов Ar. C ростом вкладываемой в разряд мощности растет как полное падение потенциала в слое, так и энергия, набираемая вторичными электронами в радиальном поле. Первое изменение в структуре спектра (рис. 2, a) происходит в тот момент, когда радиальное электрическое поле становится достаточным для ускорения вторичных электронов до потенциала ионизации атомов Ar ($\epsilon_i = 15.8 \text{ eV}$), т.е. $eU_{\text{max}}d/(L+2d) \sim \epsilon_i$. При этом следует учесть, что электроны ускоряются в электрическом поле, равном по величине мгновенному значению ВЧ-поля в слое. Усредненный потенциал для ускорения ионов приблизительно в два раза меньше. Поэтому энергия ионов, рождаемых за счет ионизации внутри полости порядка 8 eV, что и наблюдается в эксперименте. Как видно из рис. 2, а, величина потока ионов, полученных за счет ионизации внутри слоя (с энергиями $\epsilon \sim \epsilon_i/2$), сравнима с потоком ионов, поступающих с границы плазма-слой пространственного заряда $(\epsilon \sim \epsilon_{\rm max})$. С ростом вкладываемой в разряд мощности увеличивается эффективность ионизации внутри полости и соответственно растет плотность ионов (n_i) . Максимальная толщина слоя пространственного заряда связана с плотностью ионов и максимальным падением напряжения в слое выражением $L \sim (U_{\text{max}}/en_i)^{1/2}$ [10]. Поскольку напряжение на слое задано условием эквипотенциальности квазинейтральной плазмы в основном объеме разряда, локальное увеличение ионной концентрации приводит к уменьшению толщины слоя в области полости. Полость оказывается заполненной квазинейтральной плазмой, а граница плазмаслой оказывается параллельной поверхности полости (как показано на рис. 1, c). При этом все ионы, поступающие на поверхность полости,

ускоряются полным падением потенциала в слое и происходит изменение в структуре спектра (рис. 2, b), связанное с исчезновением пика в области низких энергий. Таким образом, при изменении вкладываемой мощности происходит переход от режима "толстого" слоя ($d \ll 2L$) к режиму "тонкого" слоя ($2d \gg 2L$). Кроме того, дополнительная ионизация за счет вторичных электронов, запертых радиально-симметричным потенциалом, обусловливает увеличение ионного тока на поверхность полости по сравнению с током на плоский электрод.

Работа выполнена при финансовой поддержке РФФИ (грант № 01– 02–16874), NATO Science for Peace Program (грант N 974354). Работа одного из авторов (Орлова К.Е.) обеспечена финансовой поддержкой в рамках совместного гранта Министерства образования Российской Федерации и Администрации Санкт-Петербурга.

Список литературы

- [1] Плазменная технология в производстве СБИС / Под ред. Н. Айнспрука, Д. Брауна. М.: Мир, 1987.
- [2] Chang-Koo Kim, Demetre J. Economou // Journal of Applied Physics. V. 91. N 5. P. 2594–2603.
- [3] Козлов И.Г. / Современные проблемы электронной спектроскопии. М.: Атомиздат, 1978.
- [4] Bohm C., Perrin J. // J. Rev. Sci. Instr. 1993. V. 64. N 1. P. 31-38.
- [5] Смирнов А.С., Фролов К.С., Уставщиков А.Ю. // ЖТФ. 1995. Т. 65. В. 8. С. 38–50.
- [6] Абрамов А.С., Виноградов А.Я., Косарев А.И. и др. // ЖТФ. 1998. Т. 68. В. 2. С. 52–59.
- [7] Kohler K., Coburn J.W., Horne D.E. et al. // Appl. Phys. 1985. V. 57. N 1. P. 59–66.
- [8] Браун С. Элементарные процессы в плазме газового разряда. М.: Госатомиздат, 1961.
- [9] Москалев Б.И. // Разряд с полым катодом. М.: Энергия, 1969.
- [10] Смирнов А.С. // ЖТФ. 1984. Т. 54. В. 1. С. 61-65.