09;10

Усиление сигналов в гиролампе со встречной электромагнитной волной

© А.Е. Храмов

Саратовский государственный университет им. Н.Г. Чернышевского, ГосУНЦ "Колледж" E-mail: ach@cas.ssu.runnet.ru

Поступило в Редакцию 25 ноября 2002 г.

Представлены результаты теоретического анализа процессов усиления сигналов в активной среде "винтовой электронный поток — встречная электромагнитная волна" (гиролампа со встречной волной). Исследуется также усиление сигналов в гиролампе со встречной волной и электродинамической структурой, представляющей собой связанные линии передачи.

В настоящее время гироусилители и гирогенераторы на быстрых электромагнитных волнах рассматриваются как один из перспективных классов СВЧ-приборов высокой мощности миллиметрового диапазона длин волн [1]. Среди подобных устройств существенный интерес вызывают гироприборы со встречной электромагнитной волной [2–7], в которых имеет место взаимодействие винтового (поливинтового) электронного потока со встречной волной линии передачи в условиях циклотронного резонанса $\hat{\omega} + \beta_0(\hat{\omega})v_{\parallel} \approx \omega_c$, где $\hat{\omega}$ — частота синхронизма, ω_c — циклотронная частота и v_{\parallel} — продольная скорость электронов, т.е. скорость, направленная вдоль приложенного магнитного поля B_0 , $\beta_0(\hat{\omega})$ — постоянная распространения в волноводе без электронного потока. К преимуществам подобных систем следует отнести возможность эффективной перестройки рабочей частоты за счет изменения продольной скорости электронов v_{\parallel} или ведущего магнитного поля B_0 .

Описание усиления сигналов в такой системе возможно в рамках самосогласованной модели, состоящей из уравнения движения электронов слаборелятивистского винтового пучка и стационарного уравнения

56

возбуждения встречной волны электронным потоком [8,9]

$$\frac{d\beta}{d\xi} - j\mu(1-|\beta|^2)\beta = F, \qquad \frac{\partial F}{\partial\xi} - jbF = \frac{1}{2\pi} \int_{0}^{2\pi} \beta d\theta_0, \qquad (1)$$

где $\beta = r \exp(j\theta)$ — комплексный радиус траекторий электронов ансамбля, первоначально равномерно распределенных по фазе относительно высокочастотного поля, $F = F(\xi)$ — комплексная безразмерная амплитуда поля в сечении пучка, ξ — безразмерная продольная координата. Параметр $\mu = (v_{\parallel}/c)/\varepsilon$ называется параметром неизохронности и характеризует меру инерционности системы, т. е. скорость изменения фазы электрона при изменении скорости его движения; $\varepsilon \ll 1$ параметр взаимодействия, аналогичный параметру усиления Пирса в теории приборов *O*-типа с длительным взаимодействием [10,11]; $b = (\omega + \beta_0 v_{\parallel} - \omega_c)/k\varepsilon v_{\parallel}$ — параметр рассинхронизма, пропорциональный расстройке между рабочей частотой ω и частотой холодного синхронизма $\hat{\omega}$; $k = \omega/c$. (Основные предположения, положенные в основу модели (1), подробно обсуждаются в работах [2,10,12]).

В случае рассмотрения усиления сигналов граничные и начальные условия для системы (1) задаются в виде:

$$F(\xi = A) = F_0, \qquad \beta(\xi = 0) = \exp(j\theta_0), \quad \theta_0 \in [0, 2\pi],$$
 (2)

где первое условие означает, что на вход лампы $\xi = A$ (коллекторный конец) подается внешнее поле F_0 , второе условие отражает тот факт, что винтовой пучок попадает в пространство взаимодействия лампы немодулированным (электроны-осцилляторы винтового пучка распределены равномерно по фазе относительно фазы ВЧ поля).

Анализируя методом последовательных приближений взаимодействие винтового электронного пучка со встречной электромагнитной волной можно показать, что в первом приближении выражение для поля в конце линии передачи $\xi = 0$ запишется как

$$F(0) = F_0 e^{j\beta_0 A} \left[(1 + A^2 \text{Re}\Psi(\Phi_0) + \mu A^3 \text{Re}\Theta(\Phi_0))^2 + (A^2 \text{Im}\Psi(\Phi_0) + \mu A^3 \text{Im}\Theta(\Phi_0))^2 \right]^{1/2} \times \exp(\psi_1(\Phi_0, A, \mu)), \quad (3)$$

где функция $\psi_1(\Phi_0, \xi, \mu)$ описывает фазу поля в гиролампе (ее вид можно найти в работе [12]), а функции $\Psi(\Phi_0)$ и $\Theta(\Phi_0)$ имеют вид, харак-

терный для линейной и квадратичной группировки соответственно [13]:

$$\Psi(\Phi_0) = \frac{1 - e^{-j\Phi_0} - j\Phi_0}{\Phi_0^2}, \ \Theta(\Phi_0) = \frac{2(e^{-j\Phi_0} - 1) + j\Phi_0(e^{-j\Phi_0} + 1)}{\Phi_0^3}.$$
 (4)

Величина $\Phi_0 = (b + \mu)A$ представляет собой относительный угол пролета электронов-осцилляторов винтового пучка в пространстве взаимодействия.

Из выражения (3) легко найти коэффициент усиления лампы G в зависимости от относительного угла пролета Φ_0 , а следовательно, и частоты ω внешнего сигнала. Заметим, что в этом случае получим коэффициент усиления лампы в режиме усиления малого сигнала $|F_0| \ll 1$, так как распределение поля (3) найдено в линейном приближении.

На рис. 1, *а* представлены зависимости коэффициента усиления *G* от частоты ω , построенные в соответствии с соотношением (3), для различных значений параметра неизохронности μ . Отрицательные значения частоты определяются тем, что в используемой нормировке частота ω представляет собой поправку к частоте синхронизма $\hat{\omega}$. Видно, что максимальный коэффициент усиления растет с увеличением параметра неизохронности.

На рис. 1, b (сплошные линии) показаны зависимости ширины полосы $\Delta\omega/\omega_0$ усиления и коэффициента усиления G_{max} в режиме усиления малого сигнала от параметра неизохронности μ . Ширина полосы находится по уровню 3 dB, частота ω_0 соответствует максимальному усилению G_{max} . Из рисунка видно, что коэффициент усиления быстро растет с ростом параметра неизохронности и достигает величин порядка 20 dB. В свою очередь, ширина полосы $\Delta\omega/\omega_0$ уменьшается с ростом параметра неизохронности за счет изменения величины продольной скорости электронов v_{\parallel} или магнитного поля B_0 . Учитывая узость полосы пропускания, гироусилитель со встречной волной можно рассматривать как активный узкополосный фильтр миллиметрового диапазона длин волн.

При усилении сигнала с немалой амплитудой F_0 выражение (3) уже не справедливо, и для анализа процесса усиления необходимо пользоваться исходной нелинейной системой уравнений (1), (2). На рис. 1, *b* (штриховые линии) представлены характеристики гироусилителя встречной волны как функции параметра неизохронности μ

Рис. 1. a — амплитудно-частотные характеристики гироусилителя со встречной волны в режиме усиления малого сигнала, построенные для различных значений параметра неизохронности μ ; b — зависимости максимального коэффициента усиления G и ширины полосы пропускания $\Delta \omega / \omega_0$ от параметра неизохронности. Сплошная линия I построена по результатам линейной теории.

при усилении внешнего сигнала с конечной амплитудой, построенные с помощью численного решения уравнений (1), (2). На рисунке представлены результаты расчета соответственно для двух значений амплитуды внешнего сигнала: F₀ = 0.05 и F₀ = 0.3. В первом случае зависимости $\Delta \omega(\mu)/\omega_0$ и $G_{\max}(\mu)$ существенно отличаются от результатов линейной теории только при больших параметрах неизохронности $\mu > 6.0$. Это связано с тем, что параметр неизохронности определяет величину фазовой нелинейности гиролампы с бегущей волной ($\sim \mu (1-|\beta)|^2 \beta$). Поэтому при бо́льших значениях μ нелинейные эффекты начинают сказываться при меньшей амплитуде ВЧ поля. Во втором случае (F₀ = 0.3) вид зависимостей существенно отличается от результатов малосигнальной теории: коэффициент усиления резко падает, одновременно имеет место значительное расширение полосы пропускания лампы. Таким образом, меняя амплитуду входного сигнала в достаточно широких пределах, возможно эффективно перестраивать ширину полосы пропускания гироусилителя (активного фильтра).

Одной из перспективных модификаций гиролампы со встречной электромагнитной волной является использование в качестве электродинамической структуры связанных линий передачи [14]. В такой системе, как было показано ранее, возможно существенное увеличение к.п.д. и выходной мощности при оптимальной настройке связи между линиями передачи. Поэтому значительный интерес вызывает анализ усиления сигналов в гироусилителе встречной волны со связанными линиями передачи. Нелинейные стационарные уравнения, описывающие усиление сигналов в усилителе на винтовом электронном пучке со связанными линиями передачи, имеют вид [14] (см. также работы [15,16])

$$d\beta/d\xi - j\mu(1-|\beta|^2)\beta = F_1, \tag{5}$$

$$\frac{\partial F_1}{\partial \xi} - jbF_1 + j\alpha F_2 = \frac{1}{2\pi} \int_0^{2\pi} \beta d\theta_0, \quad \frac{\partial F_2}{\partial \xi} - jbF_2 + j\alpha F_1 = 0, \quad (6)$$

$$F_1(\xi = A) = F_0, \ F_2 = (\xi = A) = 0, \ \beta(\xi = 0) = \exp(j\theta_0), \ \theta_0 \in [0, 2\pi],$$
(7)

где предполагается, что винтовой пучок пропускается через первую из линий передачи. Здесь $F_{1,2}$ — величины, пропорциональные амплитудам ВЧ полей в каждой из линий передачи, α — коэффициент связи между

связанными линиями передачи. Начальные условия (7) определяют, что внешний сигнал подается на вход $\xi = A$ первой линии передачи.

На рис. 2, *а* показаны зависимости ширины полосы пропускания $\Delta \omega / \omega_0$ и коэффициента усиления *G* гиролампы встречной волны со связанными линиями передачи, рассчитанные с помощью математической модели (5)–(7) для случая усиления малого сигнала, от величины коэффициента связи α .

Коэффициент усиления гиролампы со связанными линиями передачи падает с ростом связи (параметра α) между линиями передачи. Это связано с тем, что с увеличением α все бо́льшая часть мощности ответвляется в связанную линию передачи и с винтовым пучком взаимодействует высокочастотное поле с меньшей амплитудой, что и приводит к падению величины G. При этом уменьшение коэффициента усиления лампы одинаково ярко выражено как при большом (сплошная линия на рис. 2, a), так и малом (штриховая линия) коэффициенте связи α .

Рассмотрим теперь поведение ширины полосы $\Delta\omega/\omega_0$ усиления гиролампы с изменением связи между линиями передачи. При малых параметрах неизохронности (см. рис. 2, *a*, на котором представлена соответствующая зависимость для $\mu = 5.0$; штриховая линия) ширина полосы пропускания монотонно растет с ростом связи между линиями передачи. Иная ситуация складывается при больших величинах параметра неизохронности. Как видно из рис. 2, *a* ($\mu = 8.0$; сплошная линия), при небольших коэффициентах связи имеет место небольшое уменьшение ширины полосы пропускания (при одновременном незначительном падении коэффициента усиления) и лишь затем при бо́льших параметрах связи наблюдается расширение полосы пропускания. Причем относительное расширение полосы $\Delta\omega/\omega_0$ в данном случае меньше, чем при малых μ .

Одновременно существует возможность использования гироусилителя со встречной волной в качестве активного перестраиваемого делителя мощности, поскольку в зависимости от коэффициента связи α высокочастотную мощность на выходе лампы можно делить между линиями передачи в определенном отношении. Это иллюстрирует рис. 2, b, на котором представлено отношение амплитуд полей $\kappa = |F_2(\xi = 0)|/|F_1(\xi = 0)|$ на выходе линий передачи в зависимости от коэффициента связи при различных параметрах неизохронности. Из рисунка видно, что вид зависимостей качественно не меняется при

Рис. 2. a — зависимости максимального коэффициента усиления G и ширины полосы пропускания $\Delta\omega/\omega_0$ гироусилителя со встречной волной и связанными линиями передачи от коэффициента связи α ; b — зависимости отношения амплитуд полей $\kappa = |F_2(\xi = 0)|/|F_1$ ($\xi = 0$)| на выходе каждой из связанных линий передачи от параметра α .

изменении величины μ . При $\alpha < 0.6 \div 0.8$ зависимость $\kappa(\alpha)$ близка к линейной и меняется от 0 до 1, т.е. в этом диапазоне изменения параметра связи существует возможность деления мощности между линиями передач в любом отношении. При $\alpha > 1.0$ наблюдается преимущественная перекачка мощности в линию передачи без пучка, причем амплитуда поля $|F_2|$ быстро растет с увеличением коэффициента связи (при этом, как обсуждалось выше, резко падает коэффициент усиления гироусилителя со встречной волной).

Работа поддержана РФФИ (проект 02–02–16531) и программой "Университеты России—Фундаментальные исследования" (проект УР.01.01.065).

Список литературы

- [1] Felch K.L., Danly B.G., Jory H.R., Kreischer K.E., Lawsom W., Levush B., Temkin R.J. // Proceedings of the IEEE. 1999. V. 87. N 5. P. 752.
- [2] Дмитриев А.Ю., Трубецков Д.И., Четвериков А.П. // Изв. вузов. Радиофизика. 1991. Т. 34. № 9. С. 595.
- [3] Kou C.S., Chen S.H., Barnett L.R., Chen H.Y., Chu K.R. // Phys. Rev. Lett. 1993.
 V. 70. N 7. P. 924.
- [4] Chu K.R., Chen H.Y., Hung C.L., Chang T.H., Barnett L.R., Chen S.H., Yang T.T. // Phys. Rev. Lett. 1998. V. 81. N 21. P. 4760.
- [5] Nusinovich G.S., Vlasov A.N., Antonsen T.M. // Phys. Rev. Lett. 2001. V. 87. N 21. P. 218 301.
- [6] Трубецков Д.И., Храмов А.Е. // Письма в ЖТФ. 2002. Т. 28. В. 18. С. 34.
- [7] Короновский А.А., Ремпен И.С., Трубецков Д.И., Храмов А.Е. // Изв. РАН. Сер. физич. 2002. Т. 66. № 12. С. 1754.
- [8] Юлпатов В.К. // Вопросы радиоэлектроники. Сер. 1. Электроника. 1965.
 № 12. С. 15.
- [9] Трубецков Д.И., Четвериков А.П. // Изв. вузов. Прикладная нелинейная динамика. 1994. Т. 2. № 5. С. 3.
- [10] Дмитриев А.Ю., Коневец А.Е., Пищик Л.А., Трубецков Д.И., Четвериков А.П. // Лекции по электронике СВЧ и радиофизике. Материалы 7-й зим. школы-семинара инженеров. Саратов: Изд-во Сарат. ун-та, 1986. С. 61.
- [11] Вайнштейн Л.А., Солнцев В.А. Лекции по сверхвысокочастотной электронике. М.: Сов. радио, 1973.
- [12] Трубецков Д.И., Храмов А.Е. // Изв. РАН. Сер. физич. 2002. Т. 66. № 12. С. 1761.

- [13] Шевчик В.Н., Трубецков Д.И. Аналитические методы расчета в электронике СВЧ. М.: Сов. радио, 1970.
- [14] Короновский А.А., Храмов А.Е. // Письма в ЖТФ. 2003. Т. 29. В. 4. С. 63–70. Короновский А.А., Трубецков Д.И., Храмов А.Е. // ЖТФ. 2003. Т. 73. В. 6. С. 110–117.
- [15] Льюиселл У. Связанные и параметрические колебания в электронике. М.: Изд-во иностр. лит., 1963.
- [16] *Трубецков Д.И.* // Лекции по электронике СВЧ и радиофизике. 3-я зимняя школа-семинар инженеров. Кн. 5. Саратов: Изд-во Сарат. ун-та, 1978. С. 89.