04 Определение характеристик микросекундного плазменного прерывателя в момент обрыва тока

© С.В. Логинов

Институт сильноточной электроники CO PAH, Томск E-mail: loginov@oit.hcei.tsc.ru

Поступило в Редакцию 10 января 2003 г.

Предлагается подход для определения характеристик микросекундного плазменного прерывателя в момент обрыва тока. Получены зависимости напряжения и сопротивления прерывателя от тока и геометрических размеров. Приведено сравнение расчетных значений сопротивления с экспериментом.

Плазменный прерыватель тока используется в качестве коммутатора для обострения мощности в системах с индуктивным накоплением энергии [1]. Существующие теоретические описания прерывателей объясняют проникновение магнитного поля в плазму прерывателя в стадии проводимости, но не позволяют вычислить величину его сопротивления, согласующуюся с экспериментальными данными, в момент обрыва тока. Численное моделирование позволяет детально проследить динамику плазмы прерывателя, однако сопряжено с расчетом большого количества вариантов для выявления закономерностей поведения прерывателя.

В настоящем сообщении предлагается подход к расчету характеристик микросекундного прерывателя, результаты которого согласуются с экспериментом.

Плазменный прерыватель тока представляет собой перемычку длиной *L* вакуумной коаксиальной линии индуктивного накопителя с радиусами катода *r* и анода *R*, предварительно заполненную инжектированной со стороны анода плазмой с концентрацией *n* (рис. 1). В микросекундных прерывателях ток проводимости намного меньше обусловленного направленным движением ионов биполярного тока насыщения [2] $I_{sat.} = (m_i/mZ)^{1/2} 2\pi env_d rL$, где *m* и *e* — масса и заряд электрона, m_i и *Z* — масса и зарядовое число ионов, v_d — направленная скорость ионов.

14

Рис. 1. Геометрия прерывателя.

Под действием давления магнитного поля, протекающего в прерывателе тока, происходит ускорение плазмы в аксиальном направлении. Скорость плазмы в конце стадии проводимости

$$u \sim v_A = rac{B}{(4\pi m_i n/Z)^{1/2}}$$

где B = 2I/cr [3]. Вследствие зависимости v_A от радиуса и концентрации плазмы вместо однородного смещения плазмы в аксиальном направлении может происходить также ее смещение по радиусу в направлении электродов. В результате этого не исключено формирование вакуумного зазора в области проникновения поля так, что обращенная к накопителю поверхность плазмы приобретает вогнутую форму (рис. 1).

Проникновение магнитного поля в плазму прерывателя приводит к подавлению электронной проводимости в радиальном направлении вследствие магнитной изоляции электронов. Доступная для замыкания тока аксиальная длина прерывателя в конце стадии проводимости сокращается до некоторой величины l_s . Определим длину $l_s = (I_s/I_{sat.})L$ как длину, необходимую для замыкания тока проводимости I_s в биполярном

режиме: $I_s = (m_i/Zm)^{1/2} j_{i\,sat.}S$, где $j_{i\,sat.} = env_d$, $S = 2\pi r l_s$. При дальнейшем уменьшении l_s ток I_s начинает превосходить биполярный ток насыщения, что может приводить к эрозии плазмы и образованию вакуумного зазора d, в котором электронная компонента тока магнитоизолирована. Ток и развиваемое на прерывателе напряжение U_s связаны с величиной формируемого зазора соотношением [2]:

$$I_s \cong I_{mi} = \beta \, \frac{mc^3}{e} \, (\gamma^2 - 1)^{1/2} \, \frac{r}{d},\tag{1}$$

где $\gamma = 1 + eU_s/mc^2$, $\beta = 0.5 - 1$ [4]. При срабатывании прерывателя без нагрузки спад тока в момент обрыва незначителен и можно полагать, что $l_s \approx$ const.

Уменьшение l_s и рост d происходят за время $t_s = l_s/u$. Для координаты $0 \leqslant z \leqslant l_s$ в течение времени t = z/u скорость роста зазора

$$\dot{d} = \left(\frac{l_s}{l_s - ut} - 1\right) v_d,\tag{2}$$

а после отсечки электронного тока в течение $t = (l_s - z)/u$

$$\dot{d} = \left(\frac{j_i}{j_{i\,sat.}} - 1\right) v_d,\tag{3}$$

где

$$j_i = F\left(\frac{Zm}{m_i}\right)^{1/2} \frac{\sqrt{2}}{9\pi} \frac{mc^3}{e} \frac{(\gamma-1)^{3/2}}{d^2},$$

F — коэффициент усиления тока ионов вследствие наличия простран-

ственного заряда замагниченных электронов [5].

Из (2) следует

$$d = \frac{v_d}{u} \left(l_s \ln \frac{l_s}{l_s - z} - z \right), \tag{4}$$

из (3) в приближении $\gamma \gg 1$ и $v_d \ll \dot{d}$ с учетом (1)

$$d = \left(\frac{F}{\beta^{3/2}} \frac{\sqrt{2}}{3} \left(\frac{I_s}{mc^3/e}\right)^{1/2} \frac{l_s}{\sqrt{r}} \frac{v_d}{u} \left(l_s - z\right)\right)^{2/3}.$$
 (5)

Результирующий зазор определяется суммой выражений (4) и (5) и достигает минимального значения

$$d_m = \frac{v_d}{u} l_s \ln \frac{l_s}{\Delta} e^{1/2},\tag{6}$$

где $\Delta = l_s - z_m$, в точке

$$z_m = l_s \left(1 - \frac{\beta^{3/2}}{F} \left(\frac{3^5}{2^4} \frac{mc^3/e}{I_s} \frac{r}{l_s} \frac{v_d}{u} \right)^{1/2} \right).$$
(7)

Магнитогидродинамическая модель [6] дает совпадающие с экспериментом значения времени и тока проводимости. При линейной скорости нарастания *İ* ток проводимости

$$I_s = \left(6\pi \, \frac{m_i c^2}{Z}\right)^{1/4} (l^2 r^2 L^2 n/k)^{1/4},\tag{8}$$

где $k = \frac{\ln R/r}{(R/r)^2 - 1}$. При этом скорость проникновения магнитного поля в плазму прерывателя в конце стадии проводимости

$$u = \sqrt{2k/3} v_A. \tag{9}$$

С использованием (8) и (9) выражение (6) принимает вид

$$d = \left(\frac{3}{2k}\right)^{1/2} \frac{c}{\omega_p} \ln \frac{l_s}{\Delta} e^{1/2},\tag{10}$$

где $\omega_p = (4\pi n e^2/m)^{1/2}$. Из (10) следует, что величина зазора убывает с ростом плотности плазмы как \sqrt{n} . Исключение с помощью (8) концентрации плазмы дает для зазора более удобное для сравнения с экспериментом выражение, зависящее от тока прерывателя:

$$d = \frac{3}{2} \frac{mc^2}{e} \left(\frac{m_i}{Zm}\right)^{1/2} \frac{\dot{I}rL}{kI_s^2} \ln \frac{l_s}{\Delta} e^{1/2}.$$
 (11)

Подстановка (10) в (1) позволяет вычислить напряжение на прерывателе и его сопротивление. При $\gamma \gg 1$ формула для напряжения на прерывателе имеет вид

$$U_s = \frac{3}{2} \left(\frac{m_i}{Zm}\right)^{1/2} \frac{mc}{e} \frac{L\dot{I}}{k\beta I_s} \ln \frac{l_s}{\Delta} e^{1/2}.$$
 (12)

Рис. 2. Сравнение расчетной зависимости $R_s(I_s)$ с экспериментом (+).

Результат расчета сопротивления прерывателя $R_s = U_s/I_s$ и сравнения с экспериментом показан на рис. 2. Видно, что расчетная зависимость сопротивления от тока соответствует экспериментальным данным. Расчет выполнен для r = 3.8 cm, R = 10 cm, L = 12.4 cm. Концентрация C^{++} плазмы варьировалась от 10^{14} до 10^{16} cm⁻³, направленная скорость ионов $v_d = 2$ cm/ μ s, $\dot{I} = 1.8$ kA/ns, F = 5, $\beta = 0.5$. Для $I_s \sim 1$ MA концентрация плазмы $n \sim 1.2 \cdot 10^{15}$ cm⁻³, $l_s \sim 1$ cm. C ростом n длина l_s уменьшается $\sim n^{-3/4}$.

Из (12) следует обратно пропорциональная зависимость сопротивления прерывателя от I_s^2 . При линейном нарастании тока в прерывателе сопротивление, таким образом, обратно пропорционально протекшему заряду. Эта закономерность подтверждается экспериментами на ГИТ-4 [7] и ГИТ-12 [8].

Напряжение на прерывателе $\sim \dot{l}^{1/2} \sim U_0^{1/2}$, где U_0 — выходное напряжение генератора, что близко к полученной в [9] зависимости $(U_0)^{4/7}$, согласующейся с большим количеством экспериментов на разных установках.

Таким образом, предлагаемый подход позволяет определить характеристики микросекундного прерывателя в момент обрыва тока и выявить их функциональные зависимости от параметров прерывателя. Расчет сопротивления прерывателя выполнен для концентрации первоначально инжектированной плазмы *n*.

Список литературы

- [1] *Быстрицкий В.М., Месяц Г.А., Ким А.А.* и др. // Физика элементарных частиц и атомного ядра. 1992. Т. 23. № 1. С. 19–57.
- [2] Ottinger P.F., Goldstein S.A., Meger R.A. // J. Appl. Phys. 1984. V. 56. N 3. P. 774–784.
- [3] Чуватин А.С., Ким А.А., Кокшенев В.А., Логинов С.В. // Изв. вузов. Физика. 1997. № 12. С. 56–66.
- [4] Беломытцев С.Я., Рыжов В.В. // Письма в ЖТФ. 2001. Т. 27. В. 14. С. 74–79.
- [5] Bergeron K.D. // Appl. Phys. Lett. 1976. V. 28. N 6. P. 306–308.
- [6] Weber B.V., Commisso R.J., Cooperstein G. et al. // Pros. VIIIth Int. Conf. High-Power Particle Beams. Novosibirsk, USSR, 1990. P. 406–413.
- [7] Bastrikov A.N., Kovalchuk B.M., Loginov S.V. et al. // Proc. 12th Symp. on High Current Electronics. Tomsk, 2000. P. 360–362.
- [8] Kokchenev V.A., Kurmaev N.E., Fursov F.I. // Proc. 12th Symp. on High Current Electronics. Tomsk, 2000. P. 268–273.
- [9] Долгачев Г.И., Ушаков А.Г. // Физика плазмы. 2001. Т. 27. № 2. С. 121–130.