## оз Структура турбулентного пограничного слоя

## © Л.Н. Пятницкий

Институт высоких температур РАН, Москва E-mail: pyat7@mail.ru

## Поступило в Редакцию 25 ноября 2002 г.

Согласно волновому механизму турбулентности, пульсации гидродинамических параметров являются следствием суперпозиции возмущений, которые возникают на стенке и распространяются в потоке в виде волновых пакетов сферического типа. На границе течения, в поле сильного градиента скорости, звуковые лучи этих волн искривляются и разворачиваются в направлении стенки, их траектории с разной начальной ориентацией переплетаются, и волновые пакеты разрушаются. Пульсации параметров в области разрушения волновых пакетов образуют турбулентный пограничный слой. При отражении волн пульсации скорости непосредственно у стенки исчезают, что соответствует ламинарному подслою турбулентного пограничного слоя.

Движение в пограничном слое турбулентного течения исследуется на основе уравнений Прандтля (см., например, [1]), которые дают хороший результат при описании осредненных значений гидродинамических параметров. При этом для получения замкнутой системы уравнений ламинарного пограничного слоя используется закон трения Ньютона, в котором коэффициент вязкости  $\eta$  определяется переносом импульса поперек потока при соударениях молекул. Так, в газах  $\eta = \rho \lambda v/3$ , где  $\lambda$  и v — длина свободного пробега и тепловая скорость молекул.

Для описания пульсаций в турбулентном пограничном слое молекулярный механизм переноса импульса не подходит. Поэтому вместо коэффициента  $\eta$  вводят коэффициент  $A_t$  турбулентного обмена, а вместо длины свободного пробега  $\lambda$  — длину пути перемешивания L [2]. В этом формальном подходе передача импульса, строго говоря, не связана с реальными физическими процессами. Но в жидкостях и газах импульс может передаваться при распространении волны в процессе эволюции возмущений. Заметим, что волновое уравнение, как и уравнения Прандтля, получается из уравнений Навье–Стокса и неразрывности.

9

В работах [3,4] дано экспериментальное обоснование "волнового" механизма пульсаций и предложена концепция турбулентности. Согласно этой концепции, в области торможения потока стенкой канала образуются возмущения гидродинамических параметров. Возмущения распространяются в потоке как волновые пакеты, а их суперпозиция формирует пространственно-временное поле пульсаций параметров. Подобный процесс образования и суперпозиции волн наблюдается при движении тел по поверхности жидкости.

Задача об эволюции возмущения в покоящейся неограниченной среде известна. Следуя [6], представим его в виде шарика радиуса  $r \leq a$  с избыточной плотностью f(r). Возмущение распространяется со скоростью звука c как сферический волновой пакет толщиной 2a. Пусть l — путь, пройденный волной за время t. Тогда в пределах пакета  $|l - ct| \leq a$  скорость, давление, плотность и другие параметры  $(u, p, \rho u dp)$ . пульсируют в соответствии с видом функции f(r), и амплитуда пульсаций обратно пропорциональна пройденному волной расстоянию:

$$u, p, \rho \sim f\left(\frac{l-ct}{a}\right) \frac{1}{l}.$$
 (1)

Движение среды в канале ограниченного сечения деформирует волновой фронт. Это связано, во-первых, с отражениями волны от стенок и, во-вторых, со сложным профилем скорости в сечении канала. Методы расчета пространственно-временно́го поля пульсаций в ядре течения, их структуры и свойств с учетом отражений описаны в работе [5].

Для сравнения на рис. 1 слева показаны конфигурации волны при ее распространении в полупространстве z > 0 и в плоском канале высотой d. В обоих случаях центр волны находится в точке  $\mathbf{rp}(xp, yp, zp)$ , в нашем случае yp = zp = 0. В полупространстве положение волны относительно точки  $\mathbf{rp}$  определяется радиусом-вектором  $\mathbf{r}(\xi, \eta, \xi)$ . При движении в канале волна неоднократно отражается от стенок, создавая в точке наблюдения  $\mathbf{r_0}(x, y, z)$  постепенно затухающие пульсации, как видно из схемы рис. 1 справа. Картина суперпозиции таких волн создает впечатление хаотичности пульсаций, каковыми они в действительности не являются.

Далее проанализируем влияние на свойства пульсаций профиля скорости в сечении канала. Используем известное выражение для скорости волны  $\mathbf{V} = (\partial \omega / \partial \mathbf{k})$ , где  $\mathbf{k}$  — волновой вектор и  $\omega(\mathbf{k})$  — закон





Рис. 1. Конфигурация волны в плоском канале (а) и пульсации скорости в точке наблюдения  $r_0$  (b).

дисперсии. Для среды, движущейся со скоростью U, применимо простое дисперсионное соотношение:

$$\omega = ck + \mathbf{U}\mathbf{k}.\tag{2}$$

Пусть s — единичный вектор в направлении движения волны в точке r, в геометрической акустике — звуковой луч. Луч изменяет направление в этой точке согласно уравнению [6]:

$$\frac{ds}{dl} = \frac{1}{c} [\text{rot } \mathbf{U}, \, \mathbf{s}], \tag{3}$$

где *dl* — элемент траектории луча.

Если среда покоится,  $\mathbf{U} = \mathbf{0}$ , то  $\mathbf{V} = c \mathbf{k}/k$ . Соответственно  $\mathbf{s} = \mathbf{r}/r$ , выбранная точка волны перемещается вдоль прямой и волна сохраняет сферическую симметрию. Если среда движется, но U = const, то  $\mathbf{V} = c\mathbf{k}/k + \mathbf{U}$ , вектор s не меняет направления, и волна сносится потоком целиком, сохраняя сферическую симметрию. Именно в этих условиях рассмотрен процесс распространения волн в ядре течения, где скорость в первом приближении можно считать постоянной. Однако у стенки изменением скорости U пренебрегать нельзя. Согласно (3), звуковой луч в этой области меняет направление. Оценим суммарный угол поворота луча в поле U(z).

Течение в плоском канале направим вдоль оси х. Считаем, что скорость зависит только от координаты z и нарастает с удалением от стенки: при z = 0 имеем U = 0 и dU/dz > 0. Обозначая начальную ориентацию звукового луча индексом "0", после интегрирования (3) для

компонент вектора s получим ( $U \ll c$ ):

$$s_x = s_{x0} + M(z), \quad s_y = s_{y0}, \quad s_z = \sqrt{1 - s_x^2 - s_y^2}, \quad M(z) = \frac{U(z)}{c}.$$
 (4)

Для упрощения формул ограничимся случаем эволюции звуковых лучей в вертикальном сечении канала с азимутальным углом  $\varphi = 0$  и полярным углом  $\vartheta \in [-\pi/2, \pi/2]$ . Среднюю скорость в турбулентном потоке представим функцией

$$U(z) = U_0 [4z(1-z)]^{1/m}$$
или  $M(z) = M_0 [4z(1-z)]^{1/m},$  (5)

где  $U_0$  — скорость в середине канала между двумя стенками,  $M_0$  — соответствующее число Маха, m — параметр, характеризующий режим течения. При ламинарном режиме m = 1, при турбулентном течении  $m \gg 1$  (m = 5, 10), при постоянной по сечению скорости  $m = \infty$ . Учитывая выбор угла  $\varphi = 0$  и выражая компоненты вектора s через направляющий угол  $\vartheta$ , из (4) и (5) находим:

$$\vartheta = \arcsin\left(\sin\vartheta_0 + M_0[4z(1-z)]^{1/m}\right). \tag{6}$$

Соотношение (6) позволяет составить дифференциальное уравнение траектории луча в явном виде z(x), а также параметрические дифференциальные уравнения для определения длины пути l, пройденного лучом до точки наблюдения с координатами  $\{x, z\}$ :

$$dz/dx = 1/\operatorname{tg}\vartheta(z,\vartheta_0,M_0,m),\tag{7}$$

$$\frac{dx}{dl} = \sin \vartheta(z, \vartheta_0, M_0, m), \qquad \frac{dz}{dl} = \cos \vartheta(z, \vartheta_0, M_0, m). \tag{8}$$

Граничные условия имеют вид z(0) = 0,  $(dz/dx)|_{x=0} = 1/\operatorname{tg} \vartheta_0$  и соответственно x(0) = z(0) = 0,  $(dx/dl)|_{l=0} = \sin \vartheta_0$ ,  $(dz/dl)|_{l=0} = \cos \vartheta_0$ .

Ориентация луча и направление пульсаций при прочих равных условиях зависят от начального угла  $\vartheta_0$ . Чем больше  $|\vartheta_0|$ , тем сильнее отклонение. При движении против течения  $\vartheta_0 < 0$ , траектория луча отклоняется от стенки. В противоположном случае  $\vartheta_0 > 0$  она приближается к стенке и существует такое значение  $\vartheta_0 = \vartheta_*$ , при котором  $\vartheta = \pi/2$ , когда луч удаляется от стенки на расстояние, не превышающее некое конечное значение  $z_*$ . Пройдя максимум  $z_*$ , луч возвращается

к стенке, описывая дугообразную траекторию, своего рода цикл. Так как в цикле угол падения луча  $-\vartheta$  равен углу отражения  $\vartheta$ , он повторяется до затухания волны.

Из условия  $\vartheta = \pi/2$  и формулы (6) найдем зависимость величины  $z_*$  от угла  $\vartheta_*$  и параметров течения  $z_*(m, M_0, \vartheta_*)$  (знак "минус" перед корнем отвечает нижней стенке канала):

$$z_* = \frac{1}{2} \left( 1 - \sqrt{1 - \left(\frac{1 - \sin \vartheta_*}{M_0}\right)^m} \right). \tag{9}$$

Заметим, что скорость  $M_0$  зависит от параметра *m*. Например, в потоке воздуха в плоском канале высотой d = 1 ст число Рейнольдса достигает критической величины при  $M_0 \approx 0.01$ . Поэтому ламинарному течению m = 1 соответствует диапазон  $M_0 \in [0, 0.01]$ , для турбулентного режима  $m \gg 1$  имеем  $M_0 > 0.01$ . При m = 1 циклическое движение луча происходит в пределах небольшого сектора  $\vartheta_* > 85^\circ$ , тогда как при  $m \gg 1$  граница сектора может расшириться до  $\vartheta_* > 60^\circ$ . Кроме того, с увеличением *m* зависимость  $z_*(m, M_0, \vartheta_*)$  становится все более резкой.

Каждое значение  $z_*$  имеет свой предельный угол  $\vartheta_*$ , который зависит от m и  $M_0$ . На рис. 2 построены траектории лучей для течения с параметрами m = 5 и  $M_0 = 0.05$ . Цифрами на графике обозначены предельные углы  $\vartheta_*$ , которые относятся к траекториям, проходящим через максимальные значения  $z_* = = \{0.484, 0.463, 0.422, 0.341, 0.186, 0.075\}.$ 

Поверхность  $z_*(m, M_0, \vartheta_*)$  выделяет область начальной ориентации лучей,  $-\pi/2 \leq \vartheta_0 < \vartheta_*$ , в которой действительных значений  $z_*$  не существует. В ней лучи беспрепятственно попадают в любую точку  $z > z_*$ , где суперпозиция формирует пространственно-временно́е поле пульсаций гидродинамических параметров. Это поле аналогично тому, которое образуется в ядре течения, но имеет свои особенности. Эти особенности иллюстрирует рис. 3 для потока  $M_0 = 0.05$  и m = 5, где построены траектории лучей (без учета отраженных волн), проходящих через две точки наблюдения, удаленные на разные расстояния от стенки:  $\{x, z\} = \{0, 0.5\}$  и  $\{x, z\} = \{0, 0.1\}$ .

Из графиков прежде всего видно, что область зарождения волн *x p*, звуковые лучи которых вызывают возмущения в точке наблюдения, относительно невелика и к тому же асимметрично расположена



**Рис. 2.** Траектории лучей для предельных углов  $\vartheta_*$  в потоке m = 5,  $M_0 = 0.05$ : углы  $\vartheta_*$  соответствуют значениям  $z_* = = \{0.075, 0.186, 0.341, 0.422, 0.463, 0.484\}.$ 

относительно точки x = 0. Причем ее часть  $xp^-$  вверх по течению (xp < 0) заметно превышает протяженность участка  $xp^+$  вниз по течению (xp > 0). Влияние профиля M(z) проявляется в том, что возмущения из точек  $xp^+$  увеличивают компоненту пульсаций  $u_z$ , а из точек  $xp^-$  усиливают компоненту  $u_x$ . Следовательно, учет профиля скорости течения приводит к преимущественной ориентации пульсаций в направлении потока.

Сравним процесс формирования пульсаций в точках наблюдения, расположенных на разной высоте. Область параметра  $xp^+$  в обоих случаях ограничена одним и тем же предельным углом  $\vartheta_0 = -\pi/2$ . Различия возникают в области параметра  $xp^-$ . Для места наблюдения  $\{x, z\} = \{0, 0.5\}$  значения  $xp^-$  ограничены предельным углом  $\vartheta_* = 71.8^\circ$  ( $z = z_* = 0.5$ ). В точке  $\{x, z\} = \{0, 0.1\}$ , расположенной ближе к стенке ( $z = z_* = 0.1$ ), тоже существует предельный угол, равный  $\vartheta_* = 73.6^\circ$ . Но в ней на пульсации влияют также возмущения, лучи которых проходят через точки, лежащие выше уровня  $z_* = 0.1$ . В диапазоне  $z_* \in [0.1, 0.5]$  им соответствуют углы  $\vartheta_* \in [73.6^\circ, 71.8^\circ]$ . Поэтому с приближением к стенке компонента пульсаций  $u_x$  еще больше возрастет. Именно такой результат получен в экспериментах Г. Райхардта, а также П.С. Клебанова (см. [2, гл. 18, §4]).



**Рис. 3.** Траектории лучей, проходящих через точки наблюдения  $\{x, z\} = \{0, 0.5\}$  и  $\{x, z\} = \{0, 0.1\}$ .

Рассмотрим теперь распространение возмущений в узкой зоне  $z \in [0, 0.1]$  на примере лучей с начальными направлениями  $\vartheta_0 = \{70, 73, 75, 76, 77^\circ\}$ . Их траектории показаны на рис. 4 в потоке с теми же параметрами ( $m = 5, M_0 = 0.05$ ). Как ясно из предыдущего, луч  $\vartheta_0 = 70^\circ$ , сохраняя направление почти неизменным, уходит в ядро течения. Луч  $\vartheta_0 = 73^\circ$  описывает циклическую траекторию высотой



**Рис. 4.** Распространение звуковых лучей у стенки для углов  $\vartheta_0 = 70, 73, 75, 76, и 77^\circ$ .

 $z_* \approx 0.15$  и длиной  $l \approx 4.5$ . На такой длине возмущение практически затухает, и траектория луча выглядит как дуга вихреобразной формы. В выделенном слое остаются лучи с углами  $\vartheta_0 = \{75, 76, 77^\circ\}$  и длиной пройденного волной пути  $l \approx 1.2$ .

В зависимости от наклона  $\vartheta_0$  траектория длиной  $l \approx 1.2$  образует от двух до четырех циклов, и лучи одного возмущения переплетаются. Например, в сечении x = 1.16 вместо ожидаемого порядка  $77-76-75^{\circ}$  наблюдается последовательность  $75-77-76^{\circ}$ . В волне, конечно, угол  $\vartheta_0$  меняется непрерывно, и в слое высотой  $z_*(75^{\circ}) \approx 0.04$ (диапазон  $\vartheta_0 \in [75, 90^{\circ}]$ ) происходит полное перемешивание лучей. В этом слое, как в ядре течения, взаимодействие волн сформирует свое пространственно-временное поле пульсаций, но механизм будет другим. Дело в том, что приближение геометрической акустики, понятие "звуковой луч" становятся неприменимыми, и для вычисления пульсаций необходимо использовать интеграл Кирхгофа–Френеля. На этом основании слой высотой  $z_*(75^{\circ}) \approx 0.04$  можно считать пограничным слоем.

Согласно волновому механизму турбулентности, пространственно-временное поле пульсаций гидродинамических параметров является следствием суперпозиции возмущений, которые возникают на стенке и распространяются как волновые пакеты. В ядре потока, где градиентами параметров можно пренебречь, поле пульсаций формируется при суперпозиции волновых пакетов сферического типа. В зоне значительных градиентов параметров траектории звуковых лучей замыкаются на стенку и переплетаются, сферический волновой фронт перестает существовать, а приближение геометрической акустики становится неприменимым. Смена механизма формирования пульсаций и их преимущественно продольная ориентация определяют область пограничного слоя. Ослабление пульсаций скорости в волне при ее отражении создает у стенки ламинарный подслой турбулентного пограничного слоя. Заметим, что основным параметром, влияющим на свойства пограничного слоя, является число Маха, несмотря на условие  $M_0 \ll 1$ .

## Список литературы

- [1] Шлихтине Г. Теория пограничного слоя. М.: Наука, 1969. (Пер. с нем. von H. Schlichting. Grenzschicht–Theorie. V.G. Braun. Karlsruhe, 1960).
- [2] Prandtl L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verhandlg. III. Intern. Math. Kongr. Heidelberg, 1904. P. 484–491.
- [3] Пятницкий Л.Н. // ЖЭТФ. 1998. Т. 113. В. 1. С. 191–203.
- [4] Pyatnitsky L.N. // Physics of Vibrations. 2000. V. 8. N 3. P. 185-207.
- [5] Пятницкий Л.Н. // ЖЭТФ. 2001. Т. 119. В. 4. С. 665-684.
- [6] Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988.
- 2 Письма в ЖТФ, 2003, том 29, вып. 9