05 Учет нелинейности сегнетоэлектрического слоя в модели планарного конденсатора

© О.Г. Вендик, М.А. Никольский

С.-Петербургский государственный электротехнический университет E-mail: OGVendik@mail.eltech.ru

Поступило в Редакцию 18 сентября 2002 г.

Приводится метод расчета вольт-фарадной характеристики планарного сегнетоэлектрического конденсатора с учетом нелинейности материала сегнетоэлектрика. Учет нелинейности был произведен с помощью уравнения Гинзбурга– Девоншира при условии минимизации свободной энергии планарного конденсатора. В результате показано, что расчет емкости планарного сегнетоэлектрического конденсатора с учетом нелинейности сегнетоэлектрика может быть осуществлен в элементарной модели с погрешностью, не превышающей 2%.

Постановка задачи. В настоящее время особенно актуальны численные расчеты, позволяющие учитывать свойства сегнетоэлектрических материалов в составе планарных СВЧ-устройств. Это связано с активным освоением возможности применения сегнетоэлектриков в составе единой СВЧ интегральной схемы, когда тонкая пленка сегнетоэлектрика (порядка 1 µm) нанесена, к примеру, на поверхность подложки устройства [1,2].

Для исследования тонких пленок сегнетоэлектрика применяется простой для расчета и конструктивно удобный планарный конденсатор (рис. 1). В идеализированном случае (рис. 2, a) на границе зазора конденсатора вводятся условные электрические стенки, тогда поле в зазоре может рассматриваться как однородное, емкость такой структуры может быть рассчитана по простой формуле

$$C(E) = \varepsilon_0 \,\varepsilon_f(E) \,\frac{w h_f}{s},\tag{1}$$

где ε_0 — диэлектрическая проницаемость свободного пространства; $\varepsilon_f(E)$ — диэлектрическая проницаемость сегнетоэлектрика, которая является функцией напряженности поля E и описывается с помощью

20

Рис. 1. Структура планарного конденсатора. Расположение силовых линий электрического поля в нелинейном приближении. *1* — магнитная стенка, *2* — подложка.

феноменологической модели, развитой в работах [3,4]; s — зазор конденсатора; w — длина зазора; h_f — толщина пленки сегнетоэлектрика. К электродам конденсатора прикладывается напряжение U, которое связано с напряженностью электрического поля E в этом случае следующим образом:

$$E = \frac{U}{s},\tag{2}$$

где U — напряжение, прикладываемое к зазору конденсатора.

Благодаря принятой в модели однородности поля, нелинейность емкости C(E) повторяет нелинейность диэлектрической проницаемости сегнетоэлектрика $\varepsilon_f(E)$. На самом же деле в планарном конденсаторе распределение электрического поля неоднородно. Существующие методы расчета позволяют решить эту задачу лишь в случае линейной среды [5,6], поскольку численное решение нелинейной и неоднородной задачи слишком громоздко. Одним из таких методов является метод частичных емкостей [6], в основе которого лежит метод конформных отображений (МКО), позволяющий преобразовать поле в планарной структуре в поле плоского конденсатора с однородным заполнением [6]. Емкость планарного конденсатора, образованного пленкой сегнетоэлектрика и проводящими электродами, принято рассчитывать по следую-

Рис. 2. Расположение силовых линий электрического поля: *а* — для идеализированного конденсатора, *b* — для метода конформных преобразований. *1* — магнитная стенка, *2* — подложка, *3* — электрические стенки.

щей формуле, полученной на основе МКО:

$$C_f(E) = \frac{w\varepsilon_0\varepsilon_f(E)}{s/h_f + (4/\pi)\ln 2}.$$
(3)

Распределение силовых линий в планарном конденсаторе в случае расчета по МКО качественно представлено на рис. 2, *b*.

МКО базируется на решении уравнения Лапласа для линейного диэлектрика, и нелинейность материала сегнетоэлектрика в расчет принята быть не может. Однако пересчет напряженности поля, входящего в выражении (3) в описание диэлектрической проницаемости сегнетоэлектрика $\varepsilon_f(E)$ традиционно производится с помощью выражения (2), что необоснованно может приводить к существенным погрешностям в расчетах.

Таким образом, возникает задача найти корректный упрощенный метод расчета вольт-фарадных характеристик сегнетоэлектрического планарного конденсатора с учетом нелинейности сегнетоэлектрическо-го материала.

Метод расчета. Используем модель, условно описывающую форму силовых линий. Предположим, что "электрические стенки", введенные на рис. 2, a, на краях зазора отсутствуют. Тогда средняя силовая линия электрического поля, представленная на рис. 1 пунктиром, выходит за пределы зазора конденсатора. Данная силовая линия имеет тангенциальную D_{τ} и нормальную D_n составляющие электрической индукции:

$$D_n = \frac{Q}{w\ell}, \qquad D_\tau = \frac{Q}{wh_f}, \tag{4}$$

где Q — заряд, ℓ имеет размерность длины и учитывает растекание заряда в приэлектродных областях за пределы зазора.

Нелинейность диэлектрического отклика сегнетоэлектрика можно учесть с помощью уравнения Гинзбурга–Девоншира [7,8]:

$$\varepsilon_0 E = \frac{1}{\varepsilon_f} D + \frac{D^3}{D_N^2},\tag{5}$$

где $D_N = \varepsilon_0 (3 \cdot \varepsilon_{00})^{1.5} 0.5 \cdot E_N$; ε_f — диэлектрическая проницаемость сегнетоэлектрика; D, E — электрическая индукция и напряженность электрического поля в сегнетоэлектрике; ε_{00} — параметр феноменологической модели [3,4], связанный с постоянной Кюри-Вейса сегнетоэлектрика; E_N — нормирующая напряженность поля [3,4].

В предположении однородности электрического поля в планарном конденсаторе вдоль выделенных составляющих поля D_{τ} и D_n , а также с учетом формул (4), (5) получим выражение для разности потенциалов между электродами планарного конденсатора:

$$U(Q) = \frac{1}{\varepsilon_0 w} \left\{ \left[\frac{1}{\varepsilon_f} \frac{Q}{h_f} + \frac{Q^3}{h_f^3 w^2 D_N^2} \right] \times (s+\ell) + 2 \left[\frac{1}{\varepsilon_f} \frac{Q}{\ell} + \frac{Q^3}{\ell^3 w^2 D_N^2} \right] \times kh_f \right\}.$$
(6)

Примем обозначения: $p = s/h_f$; $x = \ell/h_f$; $A = \varepsilon_f^{0.5}/h_f w D_N$; $q = Q \cdot A$; k — параметр модели, учитывающий, насколько глубоко силовые линии электрического поля проникают в пленку сегнетоэлектрика; x нормированный на толщину пленки сегнетоэлектрика h_f параметр,

определяющий форму силовых линий в приэлектродных областях планарного конденсатора. Теперь выражение (6) может быть преобразовано к виду

$$U(q) = \frac{1}{A\varepsilon_0\varepsilon_f w} \left[\left(p + x + \frac{2k}{x} \right) q + \left(p + x + \frac{2k}{x^3} \right) q^3 \right].$$
(7)

Свободная энергия планарного конденсатора *W* может быть записана следующим образом [9]:

$$W(Q) = \int_{0}^{Q} U(Q) \cdot dQ.$$

После интегрирования выражения (6) получим

$$W(q) = \frac{1}{A^2 \varepsilon_0 \varepsilon_f w} \left[\frac{1}{2} \left(p + x + \frac{2k}{x} \right) \cdot q^2 + \frac{1}{4} \left(p + x + \frac{2k}{x^3} \right) \cdot q^4 \right].$$
(8)

Теперь рассмотрим линейный случай, когда
 $q \ll 1.$ Тогда выражения (7) и (8) можно преобразовать к
 виду

$$U(Q) = \frac{Q}{\varepsilon_0 \varepsilon_f w} \cdot \left(p + x_0 + \frac{2k}{x_0} \right), \tag{9}$$

$$W(Q) = \frac{Q^2}{2 \cdot \varepsilon_0 \varepsilon_f w} \cdot \left(p + x_0 + \frac{2k}{x_0} \right), \tag{10}$$

где x₀ не зависит от заряда в линейном приближении.

Емкость конденсатора может быть найдена, используя (9): $C_f(Q) = Q/U(Q)$:

$$C_f = \varepsilon_0 \varepsilon_f w \cdot \left(p + x_0 + \frac{2k}{x_0} \right)^{-1}.$$
 (11)

Найдем x_0 , учитывая, что свободная энергия планарного конденсатора (10) должна быть минимальна [9], чтобы решение было стационарно по отношению к выбранной форме силовой линии, т.е. $dW/dx_0 = 0$. В нулевом приближении по приложенному заряду получим

$$x_0 = \sqrt{2k}.\tag{12}$$

Подставив выражение (12) в выражение (11), получим:

$$C_f = \varepsilon_0 \varepsilon_f w \cdot \left(\frac{s}{h_f} + 2\sqrt{2k}\right)^{-1}.$$
 (13)

Сравнивая полученное выражение с формулой (3) из МКО, получим выражение для параметра *k*:

$$k = \frac{\left(\frac{2}{\pi} \cdot \ln 2\right)^2}{2}.$$
 (14)

Теперь рассмотрим нелинейный случай, когда $q \ge 1$. Тогда в результате дифференцирования выражения (8) по искомому параметру x, удовлетворяющему минимуму свободной энергии уже в нелинейном приближении, получим следующее биквадратное уравнение относительно искомого x:

$$x^4 - \frac{4}{3}kx^2 - 2kq^2 = 0.$$

Отбрасывая нефизичные решения, получим следующее выражение для *x*₁ в первом приближении как функции заряда:

$$x_1(q) = \sqrt{\frac{2}{3}k + \sqrt{\left(\frac{2}{3}k\right)^2 + 2kq^2}}.$$
 (15)

Теперь выражение (7) можно переписать следующим образом с учетом (15):

$$U(q) = \frac{1}{A\varepsilon_0\varepsilon_f w} \cdot \left[\left(p + x_1(q) + \frac{2k}{x_1(q)} \right) q + \left(p + x_1(q) + \frac{2k}{x_1^3(q)} \right) q^3 \right].$$
(16)

Динамическая емкость планарного конденсатора с учетом (16) может быть найдена из выражения

$$\frac{1}{C_{din}(Q)} = \frac{dU}{dQ}.$$
(17)

Результаты и обсужсение. Таким образом, минимизация свободной энергии планарного конденсатора в сочетании с использованием уравнения Гинзбурга–Девоншира позволяет учесть нелинейность материала сегнетоэлектрика, входящего в состав планарного конденсатора.

Рис. 3. Зависимость от приложенного напряжения следующих параметров модели: a — функции $\Delta(U)$, определяющей удлинение силовой линии за счет нелинейности сегнетоэлектрика; b — емкости планарного конденсатора (рис. 1): I — традиционный способ расчета: выражение (3) с учетом (2), 2 — развитый в настоящей работе способ расчета: выражения (17) и (16), 3 — усовершенствованный способ расчета: выражение (3) с учетом (19); c — относительной ошибки расчета емкости планарного конденсатора с использованием выражений (17) и: I — (3) с учетом (2), 2 — (3) с учетом (19). Геометрические размеры планарного конденсатора, взятые для расчета: $s = 5 \mu m$, w = 0.6 mm, $h_f = 1 \mu m$. Параметры пленки сегнетоэлектрика приведены в таблице.

Если обратиться к формуле (7) (см. также рис. 1), то можно увидеть, что средняя длина силовой линии (обозначим ее *L*) может быть представлена следующим образом:

$$L = s + h_f \Delta(U), \tag{18}$$

где $\Delta(U) = x_1(q) + 2k/x_1(q)$ — функция напряжения, определяющая удлинение силовой линии за счет нелинейности сегнетоэлектрика, U —

Письма в ЖТФ, 2003, том 29, вып. 5

П	араметры	пленки	сегнетоэлектрика	
---	----------	--------	------------------	--

Параметры пленки сегнетоэлектрика типа Ba _{0.5} Sr _{0.5} TiO ₃ , рассчитанные по модели [3, 4]								
$\varepsilon_f(0)$	$\varepsilon_f(200 \mathrm{V})$	ξs	T_F , K	T_c , K	D_N , C/m ²			
1390	210	1	175	238	471			

напряжение, определяемое выражением (16) и являющееся функцией заряда *q*.

На рис. 3, *а* показана функция $\Delta(U)$. Из рисунка видно, что эта функция близка к единице и ее среднее значение для большинства геометрий порядка $\Delta(U) \approx 0.9$, но для удобства и не в ущерб расчету положим $\Delta(U) = 1$. Исходя из сделанных оценок, получим

$$E = \frac{U}{s + h_f}.$$
(19)

Очевидно, что форма средней силовой линии электрического поля в планарном конденсаторе (рис. 1) выбрана условно. Однако найденный минимум свободной энергии обосновывает утверждение о том, что полученное решение стационарно по отношению к малой деформации средней силовой линии. Следовательно, найденная форма силовой линии близка к истинной и полученное решение задачи о нелинейности планарного конденсатора с сегнетоэлектрической пленкой достоверно.

На рис. 3, *b* представлены три зависимости емкости планарного конденсатора (рис. 1) в функции от приложенного напряжения: 1) развитый в настоящей работе способ расчета, в котором учет нелинейности сегнетоэлектрика производился с помощью уравнения Гинзбурга–Девоншира при условии минимизации свободной энергии планарного конденсатора, по формуле (17), причем приложенное напряжение найдено по формуле (16) при заданном заряде q; 2) традиционный способ расчета, когда емкость считается на основе МКО, формула (3), а пересчет напряженности поля в напряжение производится в соответствии с выражением (2); 3) усовершенствованный способ расчета, когда емкость по-прежнему считается на основе МКО, формула (3), а пересчет напряженности поля в напряжение производится в соответствии с выражением (19).

Расхождение результатов расчета емкости по формулам (17) и (3) с учетом (2) было в пределах 10–12%, а по формулам (17) и (3) с учетом (19) — 2% (рис. 3, c). Приведенное выражение (19) оказалось справедливым для большинства практически реализуемых геометрий планарного конденсатора: зазор $s = 5-30 \,\mu$ m, толщина слоя сегнето-электрика $h_f = 0.5-1 \,\mu$ m, длина зазора w = 0.1-2 mm.

Относительная погрешность учета нелинейности сегнетоэлектрика может быть сведена до 2% при расчетах емкости планарного сегнетоэлектрического конденсатора по МКО в предположении, что напряженность электрического поля и напряжение связаны выражением (19), что фактически эквивалентно удлинению силовых линий электрического поля на величину h_f .

Таким образом, применение выражения (19) в расчетах вольтфарадных характеристик планарного сегнетоэлектрического конденсатора по МКО позволяет учесть с более высокой точностью нелинейность материала сегнетоэлектрика.

Список литературы

- [1] Krowne C., Daniel M., Kirchoefer S. et al. // IEEE Trans. Microwave Theory Tech. 2002. V. 50. N 2. P. 537–548.
- [2] Vendik O, Vendik I, Setter N. et al. // Microwave and Wireless Comp. Letters. 2001. V. 11. N 10. P. 407–409.
- [3] *Vendik O.G., Zubko S.P.* // Journal of Applied Physics. 1997. V. 82. N 9. P. 4475–4483.
- [4] Vendik O.G., Zubko S.P. // Journal of Applied Physics. 2000. V. 88. N 9. P. 5343– 5350.
- [5] Деленив А.Н. // ЖТФ. 1999. Т. 69. В. 4. С. 8-14.
- [6] Вендик О.Г., Зубко С.П., Никольский М.А. // ЖТФ. 1999. Т. 69. В. 4. С. 1–7.
- [7] Гинзбург В.Л. // Успехи физических наук. 1949. Т. 38. В. 4. С. 490-525.
- [8] Devonshir A.F. // Philosophical Magazine. Part 1. 1949. V. 40. P. 1040–1063; Part II. 1951. V. 42. P. 1065–1079.
- [9] Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М., 1957. С. 532.