06;07

Влияние фотовозбуждения на электрические характеристики тонкопленочных электролюминесцентных излучателей на основе ZnS: Mn

© Н.Т. Гурин, А.В. Шляпин, О.Ю. Сабитов, Д.В. Рябов

Ульяновский государственный университет E-mail: soy@sv.uven.ru

Поступило в Редакцию 29 июля 2002 г.

Обнаружены существенные отличия кинетики тока, протекающего через тонкопленочный электролюминесцентный излучатель, и вида вольт-амперных характеристик излучателей при импульсном фотовозбуждении в синей, красной и инфракрасной областях спектра. Полученные результаты свидетельствуют о перезарядке в процессе работы излучателей глубоких центров, обусловленных вакансиями цинка и серы с образованием объемных зарядов в прианодной и прикатодной областях слоя люминофора.

Известные результаты исследования фотоэлектрических свойств, а также наблюдение полосы электролюминесценции в синей области спектра указывают на важную роль в развитии электролюминесценции тонкопленочных электролюминесцентных излучателей (ТП ЭЛИ) на основе ZnS: Mn глубоких центров, обусловленных вакансиями цинка V_{Zn} с энергией 2.7–2.8 eV ниже дна зоны проводимости ZnS: Mn [1–4]. В то же время ряд характеристик ТП ЭЛИ невозможно объяснить без участия в процессе электролюминесценции ТП ЭЛИ также и глубоких центров, обусловленных вакансиями серы V_S [4–8].

Целью работы является изучение влияния фотовозбуждения в различных областях спектра на электрические характеристики ТП ЭЛИ в активном режиме его работы для уточнения роли глубоких центров в развитии процесса электролюминесценции и оценки энергетического положения указанных центров в запрещенной зоне ZnS:Mn.

Для решения данной задачи были выполнены экспериментальные исследования ТП ЭЛИ со структурой металл-диэлектрик-полупроводник-диэлектрик-металл (МДПДМ), где М — нижний прозрачный

14

электрод на основе SnO₂ толщиной 0.2 μ m, нанесенный на стеклянную подложку, и верхний непрозрачный тонкопленочный электрод на основе Al толщиной 0.15 μ m, диаметром 1.5 mm; П — электролюминесцентный слой ZnS: Mn (0.5% mass.) толщиной 0.48 μ m; Д — диэлектрический слой ZrO₂×Y₂O₃ (13% mass.) толщиной 0.17 μ m. Слой люминофора наносили вакуум-термическим испарением в квазизамкнутом объеме при температуре подложки 250°C с последующим отжигом при температуре 250°C в течение часа, непрозрачный электрод — вакуум-термическим испарением, диэлектрические слои получали электроннолучевым испарением.

Экспериментально исследованы зависимости тока через ТП ЭЛИ I_е от времени t при возбуждении TП ЭЛИ знакопеременным напряжением треугольной формы V(t), подаваемым с генератора Г6-34 с дополнительным усилителем — формирователем и внешним генератором запуска Г5-89. Максимальная амплитуда импульсов составляла $V_m = 160 \,\mathrm{V}$ при коэффициенте нелинейности напряжения не более 2%. Использовались непрерывный режим возбуждения с частотой f = 20, 50 Hz и импульсный, когда напряжение возбуждения представляло собой пачку импульсов из двух периодов напряжения треугольной формы, следующих с частотой $f = 4, 20, 50 \, \text{Hz}$ с подачей положительной и отрицательной полуволн напряжения в первом полупериоде на верхний электрод (варианты (+Al) и (-Al) соответственно). Период следования пачек импульсов T_s составлял 0.2, 2 и 100 s. Ток I_e измерялся с помощью включаемого последовательно с ТП ЭЛИ резистора сопротивлением $100 \Omega - 10 k\Omega$, падение напряжения на котором не превышало 0.5% от V_m . Зависимости V(t), $I_e(t)$ фиксировались с помощью двухканального запоминающего осциллографа С9-16, связанного через интерфейс с персональным компьютером, которые обеспечивали для каждого канала измерение и запоминание 2048 точек выбранного периода дискретизации и 256 уровней квантования амплитуды. Математическая и графическая обработка производилась с помощью прикладных программных пакетов Maple V Release 4 Version 4.00b и GRAPHER Version 1.06. 2-D Graphing System. Зависимости среднего поля в слое люминофора $F_p(t)$, а также тока $I_p(t)$ и заряда $Q_p(t)$, протекающих через слой люминофора в режиме свечения ТП ЭЛИ, определялись по методике, изложенной в [6,7], при значениях емкости диэлектрических слоев $C_i = 730 \, \text{pF}$, слоя люминофора $C_p = 275 \, \text{pF}$, определенных с помощью измерителя иммитанса Е7-14 и известных геометрических

размеров ТП ЭЛИ. Фотовозбуждение ТП ЭЛИ осуществлялось со стороны подложки в импульсном и непрерывном режимах: в синей области спектра — светодиодом E1L51-3B с длиной волны максимума спектра излучения $\lambda_m = 475$ nm, полушириной спектра излучения $\Delta\lambda_{0.5} \approx 35$ nm, силой света ~ 1 сd, мощностью излучения $P \approx 5$ mW, плотностью потока фотонов $\Phi \approx 1.6 \cdot 10^{15}$ mm⁻²·s⁻¹; в красной области спектра — полупроводниковым лазером с $\lambda_m = 656$ nm, $\Delta\lambda_{0.5} = 15$ nm, $P \approx 1$ mW; $\Phi \approx 4 \cdot 10^{14}$ mm⁻²·s⁻¹; в инфракрасной (ИК) области — двумя излучающими диодами АЛ107А с $\lambda_m = 950$ nm, $\Delta\lambda_{0.5} = 25$ nm, суммарной мощностью $P \approx 12$ mW, суммарной плотностью потока $\Phi \approx 3 \cdot 10^{15}$ mm⁻²·s⁻¹.

Импульсный режим фотовозбуждения осуществлялся в двух вариантах: 1) при подаче светового импульса во время действия пачки импульсов из двух периодов напряжения возбуждения треугольной формы; 2) в паузе между этими пачками импульсов сразу после окончания последнего импульса с длительностью светового импульса, равного длительности паузы.

Основные результаты исследований сводятся к следующему:

- наблюдается асимметрия зависимостей $I_e(t)$, L(t), $I_p(t)$ и $I_p(F_p)$ для вариантов (-Al) и (+Al) (см. рисунок), что объясняется аналогично [6,7] неравномерным распределением дефектов структуры и ионов примеси Mn^{2+} по толщине слоя люминофора, причем концентрация ионов Mn^{2+} возрастает к верхнему (Al) электроду [6,7];
- по сравнению с вариантом без засветки при импульсной засветке в паузе между импульсами напряжения возбуждения:
 - в синей области существенно возрастает ток в начальной области зависимости $I_p(t)$ до точки r, соответствующей границе раздела "быстрого" и "медленного" участков нарастания зависимостей $I_p(t)$, при переходе через которую скорость нарастания этих зависимостей уменьшается [6,7] с одновременным уменьшением "медленного" участка (см. рисунок, a, b) и увеличением среднего поля в слое люминофора $F_p(t)$ для варианта (—Al) (см. рисунок, c, d);
 - в красной области уменьшается ток на начальном "быстром" участке нарастания зависимостей $I_p(t)$, возрастает амплитуда импульса тока $I_p(t)$ на "медленном" участке

Зависимости $I_p(t)(a, b)$ и $I_p(F_p)(c, d)$ при импульсной засветке ТП ЭЛИ в паузе между импульсами напряжения: a, c — вариант (-Al), b, d — вариант (+Al), I — без засветки, 2 — при засветке в синей области, 3 — при засветке в красной области, 4 — при засветке в ИК-области, 5 — зависимость V(t); f = 20 Hz, $T_s = 100$ s.

(см. рисунок, a, b) и поля $F_p(t)$ на обоих участках (см. рисунок, c, d), причем более сильно для варианта (-Al);

- в ИК-области происходит слабое уменьшение тока $I_p(t)$ в начальной области "быстрого" участка нарастания для варианта (-Al) с последующим увеличением скорости нарастания тока, небольшим увеличением амплитуды импульса тока $I_p(t)$ (см. рисунок, a, b) и слабым увеличением поля $F_p(t)$ для вариантов (±Al) (см. рисунок, c, d);
- указанные изменения тока $I_p(t)$ при засветке в синей и красной областях спектра существенно уменьшаются во втором полупериоде напряжения возбуждения, еще больше — в третьем полупериоде, и практически находятся в пределах погрешности измерений в четвертом полупериоде; при инфракрасной засветке приращения амплитудных значений тока $I_e(t)$ а, следовательно, и $I_p(t)$ сохраняются во втором–четвертом полупериодах напряжения возбуждения;
- при импульсной засветке во время действия импульсов напряжения изменения зависимостей $I_p(t)$ относительно случая без засветки ТП ЭЛИ существенно меньше и фиксируются практически только на участке нарастания зависимости $I_p(t)$ с изменениями амплитудных значений $I_p(t)$ в пределах погрешности измерений;
- при непрерывном возбуждении ТП ЭЛИ в исследуемом диапазоне частот напряжения возбуждения влияние непрерывной засветки во всех исследованных областях спектра на ток I_p(t) не обнаруживается.

Полученные результаты можно объяснить следующим образом. При используемой технологии получения в слое ZnS: Мп образуются различные дефекты структуры, в том числе наиболее вероятные с точки зрения термодинамики [9] вакансии цинка и серы. При этом энергетическое положение глубоких центров, обусловленных этими вакансиями, составляет: однократно заряженной вакансии цинка V_{Zn}^{-} — (0.5–0.6) eV выше потолка валентной зоны E_V [10,11], однократно заряженной вакансии цинка V_{Zn}^{2-} — (1–1.1) eV выше E_V [1–4,11], двукратно заряженной вакансии цинка V_{Zn}^{2-} — (1–1.1) eV выше E_V [1–4,11], двукратно заряженной вакансии серы

 $V_{\rm S}^{2+}$ — (1.05—1.3) eV выше E_V [9,13], нейтральной вакансии серы $V_{\rm S}^0$ — (0.2—1.05) eV ниже E_C [10,12].

С учетом того, что уровень Ферми в ZnS в равновесном состоянии находится чуть выше середины запрещенной зоны, обусловливая слабую электронную проводимость, более вероятным в равновесном состоянии следует признать в качестве основных глубокие центры $V_{\rm S}^+$ вблизи середины запрещенной зоны с энергией больше энергии центров $V_{\rm S}^{2+}$ и центры $V_{\rm Zn}^{2-}$, более глубоко расположенные в запрещенной зоне по сравнению с $V_{\rm Zn}^{-}$.

В активном режиме работы ТП ЭЛИ после превышения порогового напряжения происходит туннельная эмиссия электронов с поверхностных состояний прикатодной границы раздела "диэлектрик-люминофор", баллистическое ускорение этих электронов с последующей ударной ионизацией ускоренными электронами в прианодной области слоя люминофора наряду с центрами свечения Mn^{2+} глубоких центров, обусловленных V_{Zn}^{2-} , V_S^+ , V_{Zn}^+ с образованием положительного объемного заряда (ПОЗ), а в прикатодной области — захват свободных электронов глубокими центрами V_S^+ , V_S^{2+} , с нейтрализацией ПОЗ, образовавшегося в предыдущем цикле работы ТП ЭЛИ и формированием отрицательного объемного заряда (ООЗ). В паузе между последовательными включениями ТП ЭЛИ в активный режим происходит нейтрализация данных объемных зарядов, возрастающая с увеличением длительности паузы. Засветка ТП ЭЛИ во время паузы фотонами соответствующей энергии:

- в синей области препятствует нейтрализации ПОЗ в бывшей прианодной области, приводя к увеличению поля в прикатодной области, тока туннельной эмиссии с поверхностных состояний границы раздела "диэлектрик-люминофор" и к уменьшению составляющей тока, обусловленной ударной ионизацией глубоких центров V²⁻_{Zn}, V⁺_S в новом цикле работы ТП ЭЛИ (см. рисунок, *a*, *b*);
- в красной области приводит к торможению нейтрализации ООЗ в бывшей прикатодной области, к нейтрализации ПОЗ и образованию ООЗ в бывшей прианодной области за счет захвата возбужденных светом электронов из валентной зоны на уровень, соответствующий V⁺_S, что приводит к уменьшению поля в прикатодной области, тока туннельной эмиссии, возрастанию
- 2* Письма в ЖТФ, 2003, том 29, вып. 4

требуемых значений среднего поля в слое люминофора для ионизации глубоких центров $V_{\rm S}^0$ и $V_{\rm Zn}^{2-}$ в прианодной области в новом цикле работы ТП ЭЛИ (см. рисунок, *c*, *d*), после достижения которых амплитуда тока возрастает до значений, бо́льших, чем в отсутствие засветки (см. рисунок, *a*, *b*);

— в ИК-области — приводит к образованию дополнительных вакансий серы V_S⁺ за счет захвата освобожденных из валентной зоны излучением электронов центрами V_S²⁺, что вызывает в новом цикле работы ТП ЭЛИ уменьшение поля в прикатодной области и тока туннельной эмиссии в варианте (-Al) (см. рисунок, а), когда концентрация вакансий серы у верхней границы раздела люминофор-диэлектрик больше концентрации вакансий цинка и определяет величину ПОЗ; при увеличении приложенного поля происходит рост амплитуды тока за счет ионизации дополнительно образованных вакансий серы V_s⁺ в слое люминофора (см. рисунок). При этом сохранение приращения амплитудных значений тока $I_p(t)$ во второмчетвертом полупериодах напряжения V(t) обусловлено, по-видимому, тем, что релаксация в равновесное состояние дополнительно нейтрализованных ИК-засветкой центров V_S²⁺, находящихся в зарядовом состоянии V_S⁺, из-за наиболее глубокого расположения их по энергии в этом состоянии в запрещенной зоне ZnS происходит за максимальное по сравнению с другими центрами время, которое существенно превышает интервалы времени между последовательными включениями ТП ЭЛИ во время действия двух периодов напряжения возбуждения.

Уменьшение указанных выше изменений тока $I_p(t)$ в условиях засветки в синей или красной области при переходе по второму, третьему, четвертому полупериодам напряжения возбуждения обусловлено последовательной перезарядкой глубоких центров V_{Zn}^{2-} , V_{S}^{+} в запрещенной зоне ZnS: Мп за счет ударной ионизации и захвата свободных носителей во включениом состоянии и в паузе между последовательными включениями ТП ЭЛИ в активный режим в условиях постоянства равновесной концентрации этих центров с возвращением к квазистационарному состоянию, характерному для необлученного ТП ЭЛИ.

Список литературы

- [1] Howard W.E., Sahni O., Alt P.M. // J. Appl. Phys. 1982. V. 53. N 1. P. 639-647.
- [2] Yang K.-W., Owen S.J.T. // IEEE Trans. On Electron. Devices. 1983. V. ED-30.
 N 5. P. 452–459.
- [3] Douglas A.A., Wager J.F., Morton D.C. et al. // J. Appl. Phys. 1993. V. 73. N 1. P. 296–299.
- [4] Neyts K.A., Corlatan D., De Visschere P. et al. // J. Appl. Phys. 1994. V. 75. N 10. P. 5339–5346.
- [5] Bringuier E. // Phil. Mag. 1997. V. 75. N 2. P. 209-228.
- [6] Гурин Н.Т., Сабитов О.Ю., Шляпин А.В. // ЖТФ. 2001. Т. 71. В. 8. С. 48-58.
- [7] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // ЖТФ. 2002. Т. 72. В. 2. С. 74-83.
- [8] Гурин Н.Т., Шляпин А.В., Сабитов О.Ю. // Письма в ЖТФ. 2002. Т. 28.
 В. 15. С. 24–32.
- [9] Физика соединений А^{II}В^{VI} / Под ред. А.Н. Георгобиани, М.К. Шейнкмана. М.: Наука, Гл. ред. физ.-мат. лит., 1986. 320 с.
- [10] Крегер Ф. Химия несовершенных кристаллов. М.: Мир, 1969. 654 с.
- [11] Vlasenko N.A., Chumachkova M.M., Denisova Z.L. et al. // J. Cryst. Growth. 2000. V. 216. P. 249–255.
- [12] *Морозова И.К., Кузнецова В.А.* Сульфид цинка: получение и свойства. М.: Наука, 1987. 200 с.