05

Чувствительность дифракционной фокусировки рентгеновских лучей к межплоскостному рассогласованию при обратном рассеянии в изогнутом кристалле с эпитаксиальной пленкой

© Т. Чен

Московская государственная академия тонкой химической технологии им. М.В. Ломоносова E-mail: docent65@mtu-net.ru, ttchen@e-mail.ru

Поступило в Редакцию 18 июля 2002 г.

Теоретически исследуется дифракционная фокусировка рентгеновской волны толстым изогнутым кристаллом с автоэпитаксиальной пленкой, когда брэгтовский угол θ_B близок к $\pi/2$. Показано, что фокусировка рентгеновских лучей при их обратном рассеянияя изогнутым кристаллом с пленкой чувствительна к величине межплоскостного рассогласования $\Delta d/d$ в пленке относительно толстой подложки. Предложено использовать эту чувствительность фокусировки для определения $\Delta d/d$ с точностью $\sim 10^{-10}$.

Дифракционное отражение рентгеновского излучения кристаллами в обратном направлении ($\theta_B \cong \pi/2$) обладает следующими достоинствами: 1) высокая светосила $\sim |\chi_{hr}|^{1/2}$ кристаллической оптики (χ_{hr} — вещественная часть фурье-компоненты рентгеновской поляризуемости) [1–4]; 2) отсутствие геометрических аберраций [5]; 3) узкий спектральный интервал $\Delta\lambda \sim \lambda(\Delta\theta)^2$ и энергетический интервал $\Delta E = E(\Delta\theta)^2$ для обратноотраженных рентгеновских лучей (λ , Eи $\Delta\theta$ — длина, энергия падающей волны и угловая расходимость соответственно) [6,7]; 4) высокая чувствительность обратного рассеяния к изменению межплоскостного расстояния Δd [8,9]. Используя изогнутые кристаллы, можно еще больше увеличить светосилу кристаллической оптики по сравнению со случаем, когда $\theta_B \neq \pi/2$.

Для экспериментальной реализации обратного рассеяния необходимо "отстроиться" от точного брэгговского угла $\theta_B = \pi/2$ и ис-

89

пользовать по возможности синхротронный источник рентгеновского излучения. В этом случае источник волны и его изображение ("фокус") разнесены относительно друг друга на достаточно большое расстояние.

В настоящей работе теоретически рассматривается дифракционная фокусировка рентгеновской волны слабо изогнутым кристалломподложкой с нанесенной на него автоэпитаксиальной пленкой. Сделаем несколько предположений. Во-первых, будем считать, что толстый плоский кристалл-подложка с эпитаксиальной пленкой изгибается затем одноосно по эллиптическому цилиндру. Отметим, что при "обычной" дифракции ($\theta_B \neq \pi/2$), когда угловая ширина кривой отражения ~ $|\chi_{hr}|$, хорошим приближением эллиптического цилиндра является параболический цилиндр. Во-вторых, пусть при изгибе кристалла не происходит "отслаивания" пленки. В-третьих, величина рассогласования $\Delta d/d$ постоянна по всей толщине пленки. Известно, что слабый упругий изгиб кристалла вызывает линейное изменение периода кристаллической решетки.

В данной работе мы пренебрегаем этим изменением периода решетки. В-четвертых, рассмотрим монохроматическую волну со степенью монохроматичности $\Delta\lambda/\lambda \ll \Delta d/d$.

Пусть угловая расходимость $\Delta \theta$ падающего на кристалл излучения удовлетворяет условию:

$$\Delta\theta \ge (\Delta\theta)_{TRR} \cong 2|\chi_{hr}|^{1/2} > |\Delta d/d|^{1/2},\tag{1}$$

где $(\Delta \theta)_{TRR}$ — угловая ширина области полного отражения.

Тогда в плоскости изображения источника будут наблюдаться два изображения (рис. 1) — от подложки (S_S) и от пленки (S_f) .

Изгиб толстого совершенного кристалла с эпитаксиальной пленкой будем считать "слабым" с точки зрения динамической дифракции, чтобы амплитудный коэффициент отражения можно было аппроксимировать соответствующим выражением для неизогнутого (плоского) кристалла [10–12]:

$$R(\Delta\vartheta) = (R_1 - R_2 q)/(1 - q), \qquad (2)$$

где

$$R_{1,2} = \left(-\breve{y} \pm \{\breve{y}^2 - 1\}^{1/2}\right) (\chi_h/\chi_{-h})^{1/2}, \tag{3}$$

$$\widetilde{\mathbf{y}} = \left[2\{(\Delta\vartheta)|\Delta\vartheta| - (\Delta d/d)\} + \chi_0\right] / (\chi_h \chi_{-h})^{1/2},\tag{4}$$

Рис. 1. Геометрия фокусировки рентгеновской волны при ее обратном дифракционном рассеянии на слабо изогнутом кристалле с пленкой. *S* — источник рентгеновской волны, S_r — изображение источника от пленки, S_S — изображение источника от подложки, $|SO| = L_0 = R_x$. *l* — пленка; *L* — толстая изогнутая подложка.

 χ_0 и χ_h , χ_{-h} — фурье-компоненты рентгеновской поляризуемости, $\Delta \vartheta = \vartheta - \pi/2$ — угловое отклонение от точного брэгговского угла для произвольной плосковолновой гармоники,

$$q = (R_1 - R_0) \exp\left[i2\pi(\chi_h \chi_{-h})^{1/2} (\breve{y}^2 - 1)^{1/2} l/\lambda\right] / (R_2 - R_0), \quad (5)$$

$$R_0 = \left(-y + \{y^2 - 1\}^{1/2}\right) (\chi_h/\chi_{-h})^{1/2}, \tag{6}$$

$$y = [2(\Delta\vartheta)|\Delta\vartheta| + \chi_0]/(\chi_h\chi_{-h})^{1/2},$$
(7)

l — толщина пленки.

В формулах (4), (7) учтено, что при обратном рассеянии $\cos \theta_B \leqslant |\Delta \vartheta| \leqslant |\chi_{hr}|^{1/2}$.

Рис. 2. Пространственное распределение интенсивности в плоскости изображения источника для пленок с различной толщиной. $L_h = 10 \text{ m}, \Delta d/d = 10^{-10}, a-l = 3\Lambda, b-l = 2\Lambda, c-l = 0.5\Lambda$. Отражение (220), CuK_α-излучение, кристалл Si, $\Lambda = \lambda/|\chi_{hr}|$ — экстинкционная длина = 17 μ m. Поперечная координата ξ отсчитывается от направления волны, дифрагированной подложкой.

Амплитуда $E_h(\xi_p)$ дифрагированной волны в плоскости дифракционного изображения в соответствии с теорией, развитой аторами работы [13], выражается интегралом по плосковолновым гармоникам:

$$E_{h}(\xi_{p}) \sim \int_{-(\Delta\vartheta)_{x}}^{+(\Delta\vartheta)_{x}} d(\Delta\vartheta) R(\Delta\vartheta)$$
$$\times \exp\left[-i\varkappa(\Delta\vartheta)^{2}(1/\alpha_{0}+1/\alpha_{h})/2 - i\varkappa\Delta\vartheta\xi_{p}(1-L_{h}/R_{x})^{-1}\right]. \tag{8}$$

Здесь введены следующие обозначения: $\varkappa = 2\pi/\lambda$, $\alpha_0 = L_0^{-1} - R_x^{-1}$, $\alpha_h = L_h^{-1} - R_x^{-1}$, R_x — радиус изгиба кристалла с пленкой, L_0 и L_h — расстояния от источника до центра кристалла и от центра кристалла до изображения источника соответственно, ξ_p — поперечная координата точки наблюдения, $(\Delta \vartheta)_x = l_x/(2L_0)$, l_x — размер кристалла в плоскости дифракционного (обратного) рассеяния.

Будем считать, что плосковолновой коэффициент отражения, определяемый формулой (2), меняется гораздо медленнее, чем экспоненты в интеграле (8). Тогда геометрическое условие фокусировки (формула линзы) выглядит следующим образом: $\alpha_0 = -\alpha_h$, т. е. $L_0^{-1} + L_h^{-1} = 2R_x^{-1}$.

Нами было проведено численное интегрирование и пенсивности $I_h(\xi_p) = |E_h(\xi_p)|^2$ при $L_0 = 10$ m, $l_x = 10^{-2}$ m, $|\Delta d/d| = 10^{-10}$ m, $R_x = 10$ m. Результаты представлены на рис. 2. Видно, что для пленок с толщиной $l \ge 2\Lambda$, где $\Lambda = \lambda/|\chi_{hr}|$ — экстинкционная длина, наблюдаются два максимума интенсивности, соответствующие подложке и пленке. Расстояние $\Delta \xi$ между этими максимумами хорошо описывается формулой: $\Delta \xi = L_h |\Delta d/d|^{1/2}$.

Полученные результаты указывают на теоретическую возможность прецизионного измерения величины $\Delta d/d \sim 10^{-10}$ с использованием явления дифракционной фокусировки рентгеновской волны при ее обратном рассеянии.

К сожалению, предложенный метод нахождения $\Delta d/d$ не годится для тонких пленок с толщиной $l \leq 0.5\Lambda$.

Заметим также, что, если не выполняется условие (1), наблюдается лишь один максимум интенсивности, соответствующий фокусировке от подложки или от пленки. И в этом случае результаты настоящей работы неприменимы.

Список литературы

- [1] Kohra K., Matsushita T. // Z. Naturforsch. 1972. B. A27. S. 484.
- [2] Brümmer O., Höche H.R., Nieber J. // Phys. Stat. Sol. 1979. V. A53. P. 565.
- [3] Caticha A., Caticha-Ellis S. // Phys. Rev. 1982. V. B25. P. 971.
- [4] Kuschnir V.I., Suvorov E.V. // JETP Lett. 1986. V. 44. P. 262.
- [5] Чен Т., Бушуев В.А., Кузьмин Р.Н. // ЖТФ. 1990. Т. 60. С. 60.
- [6] Graeff W., Materlik G. // Nucl. Instr. and Meth-s. 1982. V. 195. P. 97.
- [7] Shvyd'ko Yu.V., Gerdau E. // Hyperfine Interactions. 1999. V. 123/124. P. 741.
- [8] Cusatis C., Udron D., Mazzaro I. et al. // Acta Cryst. 1996. V. A52. P. 614.

- [9] Shvyd'ko Yu.V., Gerdau E., Jäschke J. et al. // Phys. Rev. 1998. V. B57. P. 4968.
- [10] Ковальчук М.В., Кон В.Г., Лобанович Э.Ф. // ФТТ. 1985. Т. 27. С. 3379.
- [11] Бушуев В.А., Чен Т. // Вестник Московского университета. Сер. 3. Физика, астрономия. 1988. Т. 29. С. 58.
- [12] Kohn V.G. // Phys. Stat. Sol. 2002. V. B231. P. 132.
- [13] Габриелян К.Т., Чуховский Ф.Н., Пискунов Д.И. // ЖЭТФ. 1989. Т. 96. С. 834.