01;05.1 Анализ структуры волн поля дефектов в вязкопластической среде

© Н.В. Чертова

Институт физики прочности и материаловедения СО РАН, Томск E-mail: chertova@ispms.tsc.ru

Поступило в Редакцию 27 августа 2002 г.

На основе уравнений полевой теории дефектов исследована структура волн поля дефектов в вязкопластической среде. Установлен поперечный характер волн поля дефектов, характеризуемого тензором плотности и плотности потока дефектов. Найдена связь этих величин в плоской гармонической волне. Рассмотрены частные случаи сред с сильно и слабозатухающими волнами.

Продолжая исследования [1], где на основе полевой теории дефектов были рассмотрены закономерности распространения плоских волн дефектов в вязкопластической среде, обратим внимание на структуру волн. Изучение этого вопроса кроме познавательного значения важно по ряду причин. Во-первых, исследование структуры волн поля дефектов является обязательным этапом дальнейших теоретических исследований закономерностей распространения плоских волн дефектов, например с учетом границы раздела двух вязкопластических сред. Вовторых, анализ структуры волн поля дефектов позволяет дополнить экспериментальные измерения скорости пластической дисторсии соответствующими компонентами тензора плотности дислокаций, характеризующими дефектную структуру материала [2]. С другой стороны, эти результаты позволяют по скорости пластической деформации, чаще всего измеряемой в эксперименте, оценить плотность дислокаций, связанную с моментными напряжениями [3–4].

Исходная система динамических уравнений полевой теории дефектов [1,5] имеет вид

$$B(\nabla \cdot I) = -P, \qquad \nabla \cdot \alpha = 0,$$

$$\frac{\partial \alpha}{\partial t} = \nabla \times I, \qquad S(\nabla \times \alpha) = -B \frac{\partial I}{\partial t} - \sigma, \qquad (1)$$

где α , I — тензоры плотности и плотности потока дислокаций; P, σ — эффективные напряжения и импульс; B, S — константы

83

6*

теории; знаки (\cdot) , (\times) обозначают скалярное и векторное произведение. Из уравнений (1) следует, что эффективные напряжения и импульс удовлетворяют условию совместности

$$\frac{\partial P}{\partial t} = \nabla \cdot \sigma, \tag{2}$$

которое является уравнением динамического равновесия в механике сплошных сред. По определению вязкопластического тела, предполагающему зависимость напряжений от скорости пластической деформации [6], будем считать, что

$$\sigma = \eta I, \tag{3}$$

где тензор плотности потока дефектов *I* определяется скоростью пластической дисторсии *β* [7]

$$I = -\frac{\partial \beta}{\partial t},\tag{4}$$

 η — коэффициенты вязкости. Для справки: $\alpha = -\nabla \times \beta$. Как отмечалось в [1], соотношение (3) может быть записано формально на основе наблюдаемой аналогии уравнений (1) и системы уравнений Максвелла в электродинамике [8].

Рассматривая совместно (1)–(3), можно показать, что в вязкопластической среде эффективный импульс убывает со временем по закону

$$P = P_0 \exp(-t/\tau), \tag{5}$$

где $\tau = B/\eta$ — время релаксации, P_0 — начальное значение импульса. Чем меньше время релаксации, определяемое величинами, характеризующими инерционные свойства ансамбля дефектов (*B*) и вязкость среды (η), тм быстрее происходит убывание импульса. С учетом двух последних равенств исходная система (1) запишется в виде

$$\nabla \cdot I = 0, \qquad \nabla \cdot \alpha = 0,$$

$$\frac{\partial \alpha}{\partial t} = \nabla \times I, \qquad S(\nabla \times \alpha) = -B \frac{\partial I}{\partial t} - \eta I. \tag{6}$$

Рассмотрим поле дефектов, в котором величины α , *I* зависят лишь от одной пространственной координаты $\xi = m \cdot r$ и времени *t*. В этом случае каждая из девяти компонент α_{ik} будет удовлетворять уравнению

$$\frac{B}{S}\frac{\partial^2 \alpha_{ij}}{\partial t^2} - \frac{\partial^2 \alpha_{ij}}{\partial \xi^2} + \frac{\eta}{S}\frac{\partial \alpha_{ij}}{\partial t} = 0,$$
(7)

аналогичное уравнение имеет место для компонент I_{ik} .

Как показано в работе [1], эти уравнения описывают процесс распространения двух плоских гармонических волн

$$\alpha^{1,2} = \alpha e^{i\omega(t\pm\xi/V)}, \qquad I^{1,2} = I e^{i\omega(t\pm\xi/V)}$$
(8)

в направлениях $\pm m$ со скоростью

$$V = \sqrt{\frac{S}{B} / \left(1 + \frac{i\eta}{B\omega}\right)}.$$
(9)

Чтобы определить структуру волн поля дефектов, рассмотрим волну, распространяющуюся в направлении *m*. В этом случае уравнения (6) примут вид

$$\frac{\partial}{\partial \xi} (mI) = 0, \qquad \frac{\partial}{\partial \xi} (m\alpha) = 0,$$
$$\frac{\partial}{\partial \xi} [mI] = \frac{\partial \alpha}{\partial t}, \qquad S \frac{\partial}{\partial \xi} [m\alpha] = -B \frac{\partial I}{\partial t} - \eta I. \tag{10}$$

Из двух первых уравнений следует, что $\partial_{\xi}I_{\xi i} = 0$, $\partial_{\xi}\alpha_{\xi i} = 0$, т.е. проекции тензоров α , I на направление распространения волны, если не равны нулю, то могут зависеть только от времени. Умножая два последних равенства скалярно на вектор m, получим

$$\frac{\partial \alpha_{\xi i}}{\partial t} = 0, \qquad B \, \frac{\partial I_{\xi i}}{\partial t} + \eta I_{\xi i} = 0. \tag{11}$$

Первое из этих равенств означает, что проекция волны плотности дефектов на направление ξ также не зависит от времени, т. е. $\alpha_{\xi i} \equiv 0$. Иными словами, волна плотности дефектов является поперечной волной и все ненулевые компоненты лежат в плоскости волны. Из второго равенства (11) можно получить, что продольные компоненты тензора плотности потока дефектов убывают со временем

$$I_{\xi i} = I_{\xi i}(0) \exp(-t/\tau),$$

поэтому в вязкопластической среде волна I также поперечна.

Определим связь между характеристиками поля дефектов в плоской гармонической волне. Подставляя решение (8) в первое уравнение второй строки (10), получим

$$\alpha = [mI]/V. \tag{12}$$

Из (12) следует, что тензоры α , *I* по первым индексам и вектор *m* образуют левую ортогональную тройку векторов. Величина

$$\frac{1}{V} = \sqrt{\frac{B}{S} \left(1 + \frac{i\eta}{B\omega} \right)} = \sqrt{\left(1 + i \operatorname{tg} \delta \right)} / C$$
(13)

выступает в роли импеданса среды, tg $\delta = \eta/B\omega$ — тангенс угла потерь. Используя (12), можно получить отношение модулей характеристик поля дефектов

$$\frac{|I|}{\alpha} = |V| = \sqrt{(n^2 + \chi^2)} / C \tag{14}$$

и сдвиг фаз φ

$$\operatorname{tg} \varphi = \frac{\chi}{n} = \operatorname{tg}(\delta/2), \quad \varphi = \delta/2,$$
 (15)

где

$$n = \left(\sqrt{\mathrm{tg}^2 \,\delta + 1} + 1\right)^{1/2}, \quad \chi = \left(\sqrt{\mathrm{tg}^2 \,\delta + 1} - 1\right)^{1/2} \tag{16}$$

— показатели преломления и поглощения, $C = \sqrt{S/B}$.

Рассмотрим предельные случаи больших и малых потерь. Если в вязкопластической среде распространяются слабо затухающие волны, определяемые условием tg $\delta \ll 1$, то, согласно (16), n = 1, $\chi = (\text{tg } \delta)/2 = \chi(\omega)$ и

$$\frac{|I|}{|\alpha|} = |V| = \left(\sqrt{1 + \lg^2 \delta/4}\right) / C \approx 1/C, \qquad \operatorname{tg} \varphi = (\operatorname{tg} \delta) / 2. \tag{17}$$

Для волн, испытывающих сильное затухание, tg $\delta \gg 1$, $n \approx \chi = \sqrt{\mathrm{tg}\,\delta/2} = \sqrt{\eta/(2B\omega)}$ и

$$\frac{|I|}{\alpha} = |V| \approx \sqrt{\operatorname{tg}\delta} / C, \qquad \operatorname{tg}\varphi \approx 1.$$
(18)

Однако в случае tg $\delta \gg 1$ волновой процесс практически не реализуется, поскольку волна дефектов затухает на очень малых расстояниях

$$d = C/(\chi \omega) = \lambda/(2\pi\chi), \tag{19}$$

которые при tg $\delta \gg 1$ и $n \approx \chi \gg 1$ много меньше длины волны λ .

В заключение хотелось бы отметить два момента.

Условия сильного $\eta/B\omega \gg 1$ или слабого $\eta/B\omega \ll 1$ затухания волн при заданных константах материала η , B позволяют выбрать режимы поверхностного или объемного динамического воздействия в зависимости от частоты. В случае поверхностного воздействия толщина пластически деформированного слоя материала определяется как $d = \sqrt{2S/(\eta\omega)}$.

Поперечный характер волн плотности дефектов установлен на основе кинематических тождеств упругого континуума с дефектами $\nabla \cdot \alpha = 0, \ \partial \alpha / \partial t = \nabla \times I.$ Материальное соотношение, определяющее свойства среды, при этом выводе не использовалось. Что касается волн плотности потока дефектов, то их характер неразрывно связан со свойствами среды и поперечный характер волн плотности потока дефектов установлен лишь для рассматриваемых вязкопластических сред.

Работа выполнена при финансовой поддержке РФФИ (код проекта 02-01-01188).

Список литературы

- [1] Чертова Н.В., Гриняев Ю.В. // Письма в ЖТФ. 1999. Т. 25. В. 18. С. 91–94.
- [2] Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1979.
- [3] Kroner E. // Int. Engng. Sci. 1963. V. 1. P. 261–278.
- [4] Grinyaev Yu.V., Chertova N.V. // Theoretical and applied fracture mechanics. 1998. V. 28. P. 231–236.
- [5] Гриняев Ю.В., Чертова Н.В. // Физ. Мезомех. 2000. Т. З. № 5. С. 19-32.
- [6] Пэжина П. Основные вопросы вязкопластичности. М.: Мир, 1968.
- [7] Косевич А.М. Основы механики кристаллической решетки. М.: Мир, 1972.
- [8] Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. // Теоретическая физика. Т. VIII. М.: Наука, 1982.