07

Моделирование изменения характеристик солнечных элементов на основе *a*-Si: Н в течение светового дня

© Ю.В. Крюченко,¹ А.В. Саченко,¹ А.В. Бобыль,² В.П. Костылев,¹ И.О. Соколовский,¹ Е.И. Теруков,^{2,3} В.Н. Вербицкий,² Ю.А. Николаев^{2,3}

 ¹ Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, 03028 Киев, Украина
 ² Физико-технический институт им. А.Ф. Иоффе, 194021 Санкт-Петербург, Россия
 ³ НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе, 194021 Санкт-Петербург, Россия

e-mail: sach@isp.kiev.ua

(Поступило в Редакцию 5 декабря 2012 г.)

Проведено теоретическое моделирование временных зависимостей ключевых характеристик солнечных элементов на основе a-Si:H в течение светового дня. Модель позволила рассчитать временные зависимости для произвольной географической широты в пределах от 30 до 60° и для произвольного дня в году. Проиллюстрированы результаты расчетов для географической широты 45° в день равноденствия. Полученные результаты для относительных изменений характеристик солнечных элементов на основе a-Si:H с достаточно хорошей точностью справедливы и для солнечных элементов на основе других полупроводников, если их КПД находится в диапазоне от 7 до 20%.

Введение

Поскольку солнечные электростанции, работающие в земных условиях при неконцентрированном солнечном освещении, обычно не имеют системы автоматической ориентации на Солнце, то вырабатываемая ими мощность изменяется как на протяжении светового дня, так и в течение года. В существующих в настоящее время стандартах имеется лишь достаточно ограниченная информация о зависимостях мощности солнечных элементов (СЭ), привязанная к нескольким географическим широтам. В то же время в ряде случаев необходимо рассчитать и измерить временные зависимости вырабатываемой мощности значительно более подробно. Так, в частности, при небольших углах нахождения Солнца над горизонтом интенсивность освещения сильно уменьшается, поэтому необходимо знать, обусловлено ли уменьшение вырабатываемой мощности лишь уменьшением освещенности вследствие увеличения атмосферной массы или также и физическими процессами, связанными с механизмами токопрохождения и рекомбинации.

В настоящей работе проведено теоретическое моделирование временных зависимостей выходной мощности (КПД), а также других характеристик солнечных элементов на основе a-Si: H. Получены общие выражения, позволяющие описать указанные зависимости на протяжении любого из 365 дней года для произвольной географической широты между 30 и 60°. Конкретная иллюстрация полученных результатов приведена для дней равноденствия на широте 45°. Как показали проведенные оценки, полученные результаты для изменений относительных характеристик солнечных элементов на протяжении светового дня (нормированных на значение, реализующееся в 12 h дня), справедливы не только для солнечных элементов на основе *a*-Si:H, но и в случае других солнечных элементов (либо солнечных батарей) с реализующимся на практике КПД фотопреобразования.

1. Метод расчета временных (угловых) зависимостей базовых характеристик солнечных элементов на основе аморфного кремния

1.1. Расчет временных зависимостей углов

В настоящей работе расчет проведен на основе модели [1] для частного случая ориентации СЭ строго на юг, нормаль к поверхности которого направлена в точку нахождения Солнца в зените в день равноденствия (22 марта или 22 сентября). Применительно к этому случаю для нахождения угла падения $\theta(t)$ солнечного излучения на СЭ и угла $\psi(t)$ между "пальцами" контактной сетки и проекцией плоскости падения на поверхность как функции времени (и соответственно временных зависимостей всех зависящих от этих углов коэффициентов отражения и прохождения, фигурирующих в модели [1]) введем локальную систему координат $\{X, Y, Z\}$, где ось Z направлена по вертикали к земной поверхности в месте расположения СЭ, ось X — на запад, а ось Y — на юг (рассматриваем северное полушарие) (рис. 1). Кроме этого, введем также связанную с СЭ систему координат $\{X_m, Y_m, Z_m\},\$ где ось Z_m направлена по вертикали к поверхности СЭ, а лежащая в плоскости СЭ ось X_m — на запад (рис. 2).

Рис. 1. Локальная система координат и углы, характеризующие ориентацию Солнца и СЭ в этой системе.

Рис. 2. Координатная система, связанная с СЭ и характеризующаяся тремя ортами \mathbf{e}_{X_m} , \mathbf{e}_{Y_m} и \mathbf{e}_{Z_m} .

В локальной системе координат ориентацию направленного на Солнце единичного вектора \mathbf{e}_s можно характеризовать зенитным углом θ_s (или углом подъема Солнца над горизонтом β_s) и азимутальным углом φ_s . Временная зависимость зенитного угла θ_s (или угла подъема β_s) определяется следующей формулой [2,3]:

$$\cos(\theta_s) = \sin(\beta_s) = \cos(\alpha)\cos(\varepsilon)\cos\left[\frac{2\pi}{T_e}\left(t - \frac{T_e}{2}\right)\right] + \sin(\alpha)\sin(\varepsilon), \qquad (1)$$

где $T_e = 24$ h — длительность суток, t — локальное суточное время ($0 \le t \le T_e$), α — широта места расположения СЭ ($0 \le \alpha \le 90^\circ$), ε — угол склонения Земли, который в свою очередь является функцией номера

текущего дня T(D) в годовом цикле ($0 \le T(D) \le 365$):

$$\varepsilon = \left(\frac{23.45^{\circ}}{180^{\circ}}\pi\right) \sin\left(\frac{T}{365}2\pi\right)$$

= 0.40928 sin(0.0172142T)
= -0.40928 cos[0.0172142(D+10)]. (2)

В этой формуле T — номер дня, отсчитываемый от 22 марта (T = 0), а D — от 1 января (D = 1). Поскольку 22 марта $\varepsilon = 0$, то в этот день $\cos(\theta_s) = \cos(\alpha)\cos[\pi(t/12 - 1)]$.

Для каждого дня из условия $\cos(\theta_s) = 0$ можно определить времена восхода и заката Солнца t_1 и t_2 :

$$t_{1,2} = \frac{T_e}{2} \mp T_e \frac{\arccos[-\operatorname{tg}(\alpha)\operatorname{tg}(\varepsilon)]}{2\pi}.$$
 (3)

Максимально возможный рабочий период СЭ Δt определяется разностью $t_2 - t_1$: $\Delta t = T_e \arccos[-\operatorname{tg}(\alpha) \operatorname{tg}(\varepsilon)]/\pi$. Применительно к 22 марта $t_1 = 6$, $t_2 = 18$, $\Delta t = 12$ h. Определив $\theta_s(t, T)$, можно рассчитать азимутальный угол падения солнечного излучения $\varphi_s(t, T)$, используя следующую формулу [2,3]:

$$\cos(\varphi_s) = -\frac{\cos(\varepsilon)\sin[2\pi(t-T_e/2)/T_e]}{\sin(\theta_s)}.$$
 (4)

Соответственно 22 марта имеем $\cos(\varphi_s) = -\sin[\pi(t/12 - 1)]/\sin(\theta_s).$

На рис. 1 \mathbf{n}_m — единичный вектор вдоль оси Z_m (т.е. по нормали к поверхности СЭ). Для указанного частного случая ориентации СЭ из общих формул (1) и (4) имеем $\theta_m = \alpha$ и $\varphi_m = \pi/2$.

Определим орт \mathbf{e}_{X_m} как единичный вектор вдоль оси X_m (направлен строго на запад), \mathbf{e}_{Y_m} — как единичный вектор вдоль оси Y_m и $\mathbf{e}_{Z_m} = \mathbf{n}_m$ как единичный вектор вдоль оси Z_m в координатной системе, связанной с СЭ (рис. 2). В локальной системе координат, изображенной на рис. 1, эти векторы покомпонентно можно записать как

$$\mathbf{e}_{X_m} = \{1, 0, 0\}, \quad \mathbf{e}_{Y_m} = \{0, \cos \theta_m, -\sin \theta_m\},$$
$$\mathbf{e}_{Z_m} = \{0, \sin \theta_m, \cos \theta_m\}.$$

Единичный вектор \mathbf{e}_s (рис. 1) в той же локальной системе координат имеет следующий покомпонентный состав: $\mathbf{e}_s = \{\sin \theta_s \cos \varphi_s, \sin \theta_s \sin \varphi_s, \cos \theta_s\}$. Используя эти явные выражения для \mathbf{e}_{Z_m} и \mathbf{e}_s , можно найти временну́ю зависимость угла падения $\theta(t, T)$ солнечного излучения на СЭ (фигурирующие в [1] коэффициенты отражения и пропускания зависят именно от этого угла):

$$\mathbf{e}_{Z_m}\mathbf{e}_s = \cos\theta = \sin\theta_m\sin\theta_s\sin\varphi_s + \cos\theta_m\cos\theta_s. \quad (5)$$

Время начала освещения СЭ прямыми солнечными лучами t'_1 ($t_1 \le t'_1 \le t_2$) и окончания освещения t'_2 ($t'_1 \le t'_2 \le t_2$), а следовательно, и рабочий период СЭ

в этот день $t_2' - t_1'$ могут быть определены из условия $\cos \theta = 0.$

Пусть δ — угол, характеризующий ориентацию "пальцев" контактной сетки на поверхности СЭ относительно оси X_m . Для ситуации, изображенной на рис. 2, $\delta = \pi/2$. Если электроды будут направлены параллельно X_m , то этот угол соответственно будет равен нулю.

Для определения угла между осью X_m и проекцией плоскости падения солнечных лучей на поверхность СЭ рассмотрим векторное произведение

$$\mathbf{v} = [\mathbf{e}_{Z_m} \times \mathbf{e}_s] = \sin \theta \mathbf{e}_{vm},$$

где $\mathbf{e}_{vm} = \mathbf{v}/v$ — единичный вектор в направлении **v**.

Очевидно, что единичные векторы \mathbf{e}_{Z_m} и \mathbf{e}_s лежат в плоскости падения. Следовательно, **v** и \mathbf{e}_{vm} лежат в плоскости СЭ, поскольку она перпендикулярна к плоскости падения. Используя записанное ранее покомпонентное разложение вектора \mathbf{e}_{Z_m} в локальной системе координат с ортами **i**, **j** и **k** (рис. 1) и аналогичное разложение вектора \mathbf{e}_s , получим

$$\mathbf{v} = v_X \mathbf{i} + v_Y \mathbf{j} + v_Z \mathbf{k}$$

= $(\sin \theta_m \cos \theta_s - \cos \theta_m \sin \theta_s \sin \varphi_s) \mathbf{i}$
+ $(\cos \theta_m \sin \theta_s \cos \varphi_s) \mathbf{j} + (-\sin \theta_m \sin \theta_s \cos \varphi_s) \mathbf{k}.$ (6)

Поскольку $|\mathbf{v}| = v = \sin(\theta)$, то $\mathbf{e}_{vm} = \mathbf{v} / \sin(\theta)$.

Угол φ_{vX_m} между векторами \mathbf{e}_{vm} и \mathbf{e}_{X_m} , лежащими в плоскости СЭ, можно легко найти из выражения для скалярного произведения векторов $\mathbf{e}_{vm}\mathbf{e}_{X_m} =$ $= |\mathbf{e}_{vm}||\mathbf{e}_{x_m}|\cos(\varphi_{vX_m}) = \cos(\varphi_{vX_m})$. Используя записанные ранее покомпонентные разложения векторов \mathbf{e}_{vm} и \mathbf{e}_{X_m} , получим

$$\cos(\varphi_{vX_m}) = e_{vm,X}$$

= $(\sin\theta_m \cos\theta_s - \cos\theta_m \sin\theta_s \sin\varphi_s) / \sin\theta.$
(7)

Так как \mathbf{e}_{vm} ортогонален плоскости падения, то угол ψ_{sX} между осью X_m и проекцией плоскости падения солнечных лучей на поверхность СЭ равен $\psi_{sX} = \pi/2 - \varphi_{vX_m}$. Угол ψ между "пальцами" контактной сетки и проекцией плоскости падения солнечных лучей на поверхность СЭ соответственно будет определяться как $\psi = \psi_{sX} - \delta$. Именно от этого угла зависят коэффициенты отражения и пропускания, рассчитанные методом многократного отражения лучей в [1].

1.2. Спектр падающего на поверхность Земли прямого солнечного излучения при произвольных углах падения θ_s

Спектр падающего на СЭ солнечного излучения будет зависеть от угла падения $\theta_s(t)$, рассчитанного по формуле (1). В качестве солнечного спектра AM0, соответствующего условиям ближнего космоса, использовался оцифрованный эталонный ETR-спектр $\Im_0(\lambda)$ ASTM G173-03 [4,5] (ETR означает extraterrestial). По мере прохождения солнечного излучения сквозь атмосферу оно ослабляется из-за поглощения и рассеивания фотонов атомами и молекулами различных газов, из которых состоит атмосфера, а также содержащимися в ней аэрозолями. Каждая из составляющих атмосферы вносит соответствующие модификации в спектральную плотность $\Im_0(\lambda)$ исходного спектра AM0. Степень этих модификаций зависит от длины пути, пройденного светом в атмосфере Земли, т.е. от угла падения θ_s солнечного излучения на Землю в месте расположения СЭ. В настоящей работе непрерывное изменение спектра, падающего на СЭ-излучения по мере движения Солнца по небосклону, учитывается на базе модели SMARTS2 [5]. Мы рассматриваем в настоящей работе только прямое солнечное излучение без учета дополнительного вклада конуса 2.5-3.5° вокруг направления на Солнце (так называемого circumsolar radiation [4]) и рассеянного в атмосфере света, хотя в принципе оба эти фактора также могут быть учтены в рамках модели [5]). Согласно [5], основной вклад в ослабление исходного спектра АМО в этом случае дают следующие шесть механизмов:

- 1) рэлеевское рассеяние излучения,
- 2) поглощение озоном,
- 3) поглощение двуокисью азота NO₂,
- 4) поглощение однородной смесью остальных газов,
- 5) поглощение парами воды,
- 6) аэрозольная экстинкция.

В результате спектральная плотность $\Im(\lambda, \theta_s)$ падающего на поверхность Земли прямого солнечного излучения в месте расположения СЭ определяется по следующей формуле:

$$\Im(\lambda,\theta_s) = \Im_0(\lambda) \prod_{i=1}^6 T_i(\lambda,m_i(\theta_s)), \qquad (8)$$

где $T_i(\lambda, m_i(\theta_s)) \leq 1$ — соответствующие коэффициенты ослабления (затухания). Оптические массы m_i каждой из основных компонент воздуха, приводящих к ослаблению спектра $\Im_0(\lambda)$, можно определить по следующей эмпирической формуле:

$$m_i(\theta_s) = \left\{ \cos \theta_s + a_1(i) [\theta_s]^{a_2(i)} / [a_3(i) - \theta_s]^{a_4(i)} \right\}^{-1},$$
(9)

где величины $\theta_s(t)$ следует подставлять в градусах. Значения коэффициентов $a_1(i)-a_4(i)$ и коэффициентов ослабления $T_i(\lambda, m_i(\theta_s))$ рассчитываются для заданных значений параллели, высоты СЭ над уровнем моря, времени года и других параметров. С этой целью используется приведенная в [5] таблица реперных атмосфер (табл. 1).

При заданной высоте z положення СЭ над уровнем моря по каждой из реперных атмосфер производилась линейная аппроксимация параметров атмосфер между их значениями при z = 0 и 1 km. Затем аналогичная линейная аппроксимация для уже определенных значений для конкретного z производилась по широте α

Атмосфера, широта	Высота	Температура	Эффективная		Относительная	Эффективная длина пути и				
	над уровнем воздуха	температура Давление озона	влажность	O ₂	CO ₂	H ₂ O	O ₃	NO ₂		
	z, km	T_a, \mathbf{K}	T_{eo}, \mathbf{K}	<i>p</i> , mb	<i>RH</i> ,%	km	km	cm	atm-cm	atm-cm
USSA 45°N	0 1	288.2 281.7	225.4 223.4	1013.3 898.8	45.5 48.7	4.9635 3.9637	4.6854 3.6853	1.419 0.899	0.3434	$2.04 \cdot 10^{-4}$
MLS 45°N	0 1	294.2 289.7	232.1 229.7	1013.3 902.0	75.7 65.6	4.9383 3.9622	4.8866 3.8792	2.927 1.727	0.3316	$2.18 \cdot 10^{-4}$
MLW 45°N	0 1	272.2 268.7	220.6 218.7	1018.0 897.3	77.0 70.4	5.0762 3.9953	4.5566 3.5658	0.855 0.549	0.3768	$1.99 \cdot 10^{-4}$
SAS 60°N	0 1	287.2 281.7	233.6 231.7	1010.0 896.0	74.9 69.8	4.9309 3.9325	4.7057 3.7118	2.079 1.316	0.3448	$2.16 \cdot 10^{-4}$
SAW 60°N	0 1	257.2 259.1	217.4 216.1	1013.0 887.8	80.4 69.3	5.0968 3.9512	4.3277 3.3635	0.424 0.295	0.3757	$1.87 \cdot 10^{-4}$
STS 30°N	0 1	301.2 293.7	224.5 221.5	1013.5 904.6	80.0 65.0	4.9006 3.9623	4.9444 3.9412	4.219 2.593	0.3000	$2.00 \cdot 10^{-4}$
STW 30°N	0 1	287.2 284.2	221.2 218.3	1021.0 906.4	80.0 70.0	5.0198 4.0054	4.8180 3.8100	2.101 1.218	0.2800	$1.00 \cdot 10^{-4}$

Таблица 1. Показатели атмосфер

Примечание. USSA — U.S. Standard Atmosphere, MLS — летняя на средних широтах, MLW — зимняя на средних широтах, SAS — подарктическая летняя, SAW — подарктическая зимняя, STS — субтропическая летняя, STW — субтропическая зимняя.

Таблица 2. Коэффициенты для расчета оптических масс

Индекс і	Механизм ослабления излучения	$a_1(i)$	$a_2(i)$	$a_3(i)$	$a_4(i)$
1	Рэлеевское рассеяние	$4.5665 \cdot 10^{-1}$	0.07	96.4836	1.6970
2	Поглощение озоном	$2.6845 \cdot 10^{-2}$	0.5	115.420	3.2922
3	Поглощение двуокисью азота NO ₂	$6.0230 \cdot 10^{-2}$	0.5	117.960	3.4536
	(стратосферный NO ₂)				
4	Поглощение однородной смесью	$4.5665 \cdot 10^{-1}$	0.07	96.4836	1.6970
	остальных газов				
5	Поглощение парами воды	$3.1141 \cdot 10^{-2}$	0.1	92.4710	1.3814
6	Аэрозольная экстинция	$3.1141 \cdot 10^{-2}$	0.1	92.4710	1.3814

места расположения СЭ на основе реперных значений при $\alpha = 30, 45$ и $60^{\circ}N$. Затем, используя найденные показатели для "летних" (S) и "зимних" (W) атмосфер, определялись показатели "весенней" атмосферы как среднее между показателями S- и W-атмосфер.

Значения коэффициентов, входящих в формулу (9) для определения оптических масс, приведены в табл. 2.

1.2.1. Рэлеевское рассеяние (i = 1)

$$T_1(\lambda, \theta_s) = \exp\left[-\frac{m_1(\theta_s)P}{A_1\lambda^4 + A_2\lambda^2 + A_3 + A_4\lambda^{-2}}\right], \quad (10)$$

где $P = p/p_0$ (значения *p*, как и другие параметры, предварительно определены указанными линейными аппроксимациями по реперным значениям табл. 1), $p_0 = 1013.25$ mb, $A_1 = 117.2594$, $A_2 = -1.3215$, $A_3 =$

= $3.2073 \cdot 10^{-4}$, $A_4 = -7.6842 \cdot 10^{-5}$. В этой и последующих формулах значения длины волны λ подставляются в μ m.

1.2.2. Поглощение озоном O_3 (i = 2)

$$T_2(\lambda, \theta_s) = \exp[-m_2(\theta_s)u_2\alpha_2(\lambda, T_{eo})], \qquad (11)$$

где $u_2(u_{O_3})$ — определенная по табл. 1 эффективная длина пути для случая озона в единицах atm-cm, $\alpha_2(\lambda, T_{eo})$ — спектральный коэффициент поглощения при эффективной температуре озона T_{eo} (T_{eo} также определяется по табл. 1). Коэффициент поглощения $\alpha_2(\lambda, T_{ro})$ при референсной лабораторной температуре $T_{ro} = 228$ К табулирован в приложении к [5]. В области $\lambda < 0.344\,\mu{
m m}$ имеет место следующая коррекция:

$$\alpha_2(\lambda, T_{eo}) = \max\{0, \alpha_2(\lambda, T_{ro}) + c_1(T_{eo} - T_{ro}) + c_2(T_{eo} - T_{ro})^2\}.$$
(12)

При $\lambda < 0.310 \, \mu m$

С

$$c_{2} = (9.6635 \cdot 10^{-3} - 6.3685 \cdot 10^{-2} \lambda)$$
$$+ 0.10464 \lambda^{2})/(1 - 3.6879\lambda).$$
(13)

В области $0.310\,\mu{
m m} < \lambda < 0.344\,\mu{
m m}$

$$c_1 = 0.39626 - 2.3272 \lambda + 3.4176 \lambda^2,$$

$$c_2 = 1.8268 \cdot 10^{-2} - 0.10928 \lambda + 0.16338 \lambda^2.$$
(14)

В области 0.344 μ m < λ < 0.407 μ m температурная коррекция практически отсутствует и $\alpha_2(\lambda, T_{eo}) \approx \alpha_2(\lambda, T_{ro})$. В области 0.407 μ m < λ < 0.560 μ m температурная коррекция имеет следующий вид:

$$\alpha_2(\lambda, T_{eo}) = \max\{0, \alpha_2(\lambda, T_{ro})[1 + 0.0037083(T_{eo} - T_{ro}) \\ \times \exp[28.04(0.4474 - \lambda)]\}.$$
(15)

В области $\lambda > 0.560 \,\mu$ т температурная коррекция практически отсутствует и $\alpha_2(\lambda, T_{eo}) \approx \alpha_2(\lambda, T_{ro})$.

1.2.3. Поглощение двуокисью азота NO₂ (i = 3)

Двуокись азота обычно находится в стратосфере и принимает участие в формировании озона. Тогда ее оптическая масса $m_3(\theta_s)$ описывается формулой (9) со "стратосферными" значениями соответствующих коэффициентов $a_3(j)$, приведенными в табл. 2. Но над большими городами или промышленными районами кроме стратосферного имеется еще и прилегающий к Земле слой тропосферного NO₂. В случае, если высота столбца h_{tr} (эффективная длина пути u_{tr}) тропосферного NO₂ значительно превышает высоту столбца h_{st} (эффективную длину пути u_{st}) стратосферного NO₂, то вместо $m_3(\theta_s)$ следует использовать аэрозольную оптическую массу $m_6(\theta_s)$. В случае сопоставимых высот столбцов (эффективных длин пути) тропосферного и стратосферного NO₂ берется усредненное значение

$$\overline{m}_3(\theta_s) = m_3(\theta_s)u_{st}/(u_{st}+u_{tr}) + m_6(\theta_s)u_{tr}/(u_{st}+u_{tr}).$$

Коэффициент ослабления при этом равен

$$T_3(\lambda, \theta_s) = \exp[-\tilde{m}_3(\theta_s)\tilde{u}_3\alpha_3(\lambda, T_{en})], \qquad (16)$$

где $\tilde{u}_3 = u_{st} + u_{tr}$ — эффективная длина пути для случая двуокиси азота в единицах atm-cm, $\alpha_3(\lambda, T_{en})$ — спектральный коэффициент поглощения при эффективной температуре T_{en} . Если $\tilde{u}_3 \leq 5.0 \cdot 10^{-4}$ atm-cm,

то $T_{en} = T_{eo}$ (где T_{eo} определяется по табл. 1); если $\tilde{u}_3 \geq 5.0 \cdot 10^{-3}$, то $T_{en} = T_a$ (тропосферное значение температуры, также определяемое по табл. 1); если $5.0 \cdot 10^{-4} < \tilde{u}_3 < 5.0 \cdot 10^{-3}$, то T_{en} — среднее (с соответствующими весовыми коэффициентами) от T_{eo} и T. Спектральный коэффициент поглощения $\alpha_3(\lambda, T_{en})$ имеет следующий вид:

$$\alpha_{3}(\lambda, T_{en}) = \max\left\{0, \alpha_{3}(\lambda, T_{rn})\right.$$

$$\times \left[1 + (T_{en} - T_{rn})\sum_{i=0}^{i=5} f_{i}\lambda^{i}\right]\right\}, \qquad (17)$$

где $\alpha_3(\lambda, T_{rn})$ — табулированный в приложении к [5] спектральный коэффициент поглощения при референсной температуре $T_{rn} = 243.2$ К, $f_0 = 0.69773$, $f_1 = -8.1829$, $f_2 = 37.821$, $f_3 = -86.136$, $f_4 = 96.615$, $f_5 = -42.635$ при $\lambda < 0.625 \, \mu$ т или $f_0 = 0.03539$, $f_1 = -0.04985$, $f_2 = f_3 = f_4 = f_5 = 0$ при $\lambda > 0.625 \, \mu$ т.

Значения полной эффективной длины пути \tilde{u}_3 в индустриальных районах могут колебаться от $4.4 \cdot 10^{-5}$ до $1.3 \cdot 10^{-2}$ atm-cm со средним значением $1.66 \cdot 10^{-3}$ atm-cm. В чистых районах, где только стратосферная двуокись азота влияет на прохождение лучей, $\tilde{u}_3 = u_3$, где $u_3 = 2 \cdot 10^{-4}$ atm-cm (табл. 1).

1.2.4. Поглощение однородной смесью остальных газов (i = 4)

Для однородной смеси остальных газов, основными из которых являются кислород O_2 и углекислый газ CO_2 , коэффициент прохождения $T_4(\lambda, \theta_s)$ описывается следующей формулой:

$$T_4(\lambda, \theta_s) = \exp\left[-\left(m_4(\theta_s)u_4\alpha_4(\lambda)\right)^a\right], \qquad (18)$$

где $m_4(\theta_s) = m_1(\theta_s)$ (оптическая масса для механизма рэлеевского рассеяния), $\alpha_4(\lambda)$ — табулированный в приложении к [5] спектральный коэффициент поглощения для смеси остальных газов. В качестве эффективной длины пути u_4 используется u_{O_2} (определяется по табл. 1) для $\lambda < 1 \mu$ m и u_{CO_2} для $\lambda > 1 \mu$ m. Показатель a в экспоненте соответственно принимает значения 0.5641 для $\lambda < 1 \mu$ m и 0.7070 для $\lambda > 1 \mu$ m.

1.2.5. Поглощение парами воды (i = 5)

Коэффициент прохождения $T_5(\lambda, \theta_s)$ в случае поглощения излучения парами воды описывается следующей формулой:

$$T_5(\lambda, \theta_s) = \exp\left[-\left(\left[m_5(\theta_s)u_5\right]^{1.05}f_w^n B_w \alpha_5(\lambda)\right)^c\right], \quad (19)$$

где $m_5(\theta_5)$ — оптическая масса водяного пара, $\alpha_5(\lambda)$ — табулированный в приложении к [5] спектральный коэффициент поглощения для паров воды, u_5 — эффективная

Таблица 3. Коэффициенты c_i и d_i , входящие в выражение для α_1 и α_2

Vспория	Коэффициенты							
ЭСЛОВИЛ	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> 3	d_1	d_2	d_3	d_4	
Сельские Городские Морские Тропосферные	0.581 0.2595 0.1134 0.6786	16.823 33.843 0.8941 13.899	17.539 39.524 1.0796 13.313	0.8547 1.0 0.04435 1.8379	78.696 84.254 1.6048 14.912	$\begin{array}{c} 0\\ -9.1\\ 0\\ 0 \end{array}$	54.416 65.458 1.5298 5.96	

длина пути (высота столба преципитата паров воды),

$$f_w = k_w [0.394 - 0.26946 \lambda + (0.46478 + 0.23757 \lambda)P],$$
(20)

где $P = p/p_0$, (значения p рассчитываются по табл. 1), $k_w = 1$ для $\lambda < 0.67 \,\mu\text{m}$ и $k_w = (0.98449 + +0.0023889 \,\lambda) u_5^q$ для $\lambda > 0.67 \,\mu\text{m}$, $q = -0.02454 + +0.037533 \,\lambda$. Степенные показатели n и c в (19) выражаются как

$$n = 0.88631 + 0.025274 \lambda - 3.5949 \exp(-4.5445 \lambda),$$
(21)
$$c = 0.53851 + 0.003262 \lambda + 1.5244 \exp(-4.2892 \lambda).$$
(22)

Корректирующий множитель В_w равен

$$B_w = h(m_5 u_5) \exp(0.1916 - 0.0785m_5 + 4.706 \cdot 10^{-4}m_5^2),$$
(23)

где

$$h(m_5u_5) = 0.624(m_5u_5)^{0.457}$$
, если $\alpha_5(\lambda) < 0.01$,

 $h(m_5u_5) = (0.525 + 0.246m_5u_5)^{0.45},$ если $\alpha_5(\lambda) > 0.01.$ (24)

1.2.6. Аэрозольная экстинкция (i = 6)

Коэффициент прохождения $T_6(\lambda, \theta_s)$, связанный с аэрозолями, описывается следующей формулой:

$$T_6(\lambda, \theta_s) = \exp[-m_6(\theta_s)\beta_i \lambda^{-\alpha_i}], \qquad (25)$$

где $\alpha_i = \alpha_1$, если $\lambda < \lambda_0$ $(\lambda_0 = 0.5\,\mu\text{m})$, и $\alpha_1 = \alpha_2$, если $\lambda > \lambda_0$,

$$\alpha_1 = (c_1 + c_2 X_{rh})/(1 + c_3 X_{rh}),$$

$$\alpha_2 = (d_1 + d_2 X_{rh} + d_3 X_{rh}^2)/(1 + d_4 X_{rh}),$$

$$X_{rh} = \cos(0.9RH),$$
(26)

где относительная влажность RH рассчитывается по табл. 1, а коэффициенты c_i и d_i приведены в табл. 3. Для β_i имеют место следующие выражения:

$$\begin{split} \beta_{i} &= \beta_{1} = 2^{\alpha_{2} - \alpha_{1}} \beta, \quad \text{если} \quad \lambda < \lambda_{0}, \\ \mathbf{H} \quad \beta_{i} &= \beta_{2} = \beta, \quad \text{если} \quad \lambda > \lambda_{0}, \\ \beta &= 0.55^{\alpha_{2}} [1.3307(V_{r}^{-1} - V_{m}^{-1})^{0.614} \\ &\quad + 3.4875(V_{r}^{-1} - V_{m}^{-1})], \end{split}$$
(27)

где $V_m = 340.85 \,\mathrm{km}$ — теоретическое значение максимальной метеорологической дальности, теоретическое соотношение между метеорологической дальностью V_r и видимостью V имеет вид

$$V_r = \ln(0.02) / \ln(0.05) V = 1.306 V.$$
 (28)

В реальных условиях коэффициент при видимости V в (28) может варьироваться от 1.0 до 1.6. Видимость V сообщается метеорологическими службами аэропортов (как и относительная влажность, давление и прочие характеристики). Для сельской местности реальной является величина $V_r = 25 \text{ km} (V = 19 \text{ km}).$

2. Результаты расчетов

Расчеты временных (угловых) зависимостей характеристик СЭ на базе a-Si: Н были проведены для следующего набора основных параметров: широта $\alpha = 45^{\circ}$, высота над уровнем моря z = 0, тип атмосферы весенняя, номер дня начиная с 22 марта — 0, угол между осью Х_т и направлением "пальцев" контактной сетки на поверхности СЭ $\delta = 0^{\circ}$, длина пути для тропосферного NO₂ $u_{\rm tr} = 0$ atm-cm, видимость V = 19 km, параметры для аэрозольной экстинкции соответствуют случаю сельской местности, содержание водорода в a-Si:H [H]=10%, толщина p^+ -слоя $d_p = 0.24 \,\mu \mathrm{m}$, толщина i(n)-слоя $d = 0.6 \,\mu \mathrm{m}$, толщина технологического n^+ -слоя $d_n = 0.02 \,\mu \text{m}$, толщина слоя ITO $d_{\rm ITO} = 0.4\,\mu{\rm m}$, толщина покрытия SiO₂ $d_{\rm SiO_2} = 0.09\,\mu{\rm m}$, коэффициент металлизации фронтальной поверхности СЭ "пальцами" контактной сетки *m* = 0.05, ширина "пальцев" контактной сетки на фронтальной поверхности СЭ $L_F = 0.02 \,\mu$ m, кон-центрация дырок в ITO $n_p^{\text{ITO}} = 10^{19} \,\mathrm{cm}^{-3}$, плотность тока насыщения $j_s = 10^{-12} \,\mathrm{A/cm^{-2}}$, фактор неидеальности r = 1.5, подвижность фотоэлектронов в p^+ -слое $\mu_n^p = 2 \,\mathrm{cm}^2/(\mathrm{V} \cdot \mathrm{s}),$ подвижность электронов в i(n)-слое $\mu_n^{i(n)} = 2 \, {
m cm}^2/({
m V} \, \cdot \, {
m s}),$ время жизни фотоэлектронов в p^+ -слое $\tau_n^{p} = 10^{-7}$ s, время жизни электронов в i(n)-слое $\tau_n^{i(n)} = 10^{-7}$ s, скорость поверхностной рекомбинации электронов на фронтальной поверхности СЭ $S_0 = 100 \text{ сm/s}$, подвижность фотодырок в i(n)-слое $\mu_p^{i(n)} = 0.3 \,\mathrm{cm}^2/(\mathrm{V}\cdot\mathrm{s})$, подвижность дырок в p^+ -слое $\mu_p^{(p)} = 0.3 \,\mathrm{cm}^2/(\mathrm{V}\cdot\mathrm{s})$, время жизни фотодырок в i(n)-слое $\tau_p^{i(n)} = 10^{-5}$ s, время жизни фотодырок в

1.0

0.8

0.6

0.4

0.2

0

0

Normalized values

a 0.9 Voltage, V 0.8 0.7 0.6 2 0 4 6 Time, h Short-cirquit current density, mA/cm² 12 0.80 b 10 2 8 Filling factor 0.78 6 4 0.76 2 0 0 2 4 6 Time, h 8 10 С Power output, mW/cm² 8 6 Efficiency, % 6 4 2 2 0 0 2 4 0 6 Time, h

Рис. 3. Абсолютные изменения характеристик СЭ на протяжении половины светового дня: *а* — напряжение разомкнутой цепи (кривая *I*) и фотонапряжение в условиях максимальной отбираемой мощности (кривая *2*), *b* — ток короткого замыкания (кривая *I*) и фактор заполнения ВАХ (кривая *2*), *c* — КПД фотопреобразования (кривая *I*) и выходная мощность (кривая *2*).

 p^+ -слое $\tau_p^{(p)} = 10^{-5}$ s, скорость поверхностной рекомбинации дырок на тыльной поверхности СЭ $S_d = 10$ cm/s, подвижность дырок в слое ITO $\mu_p^{\text{ITO}} = 25 \text{ cm}^2/(\text{V} \cdot \text{s})$, концентрация доноров в i(n)-области $N_{D0} = 10^{17}$ cm⁻³, глубина залегания максимума гауссовского распределения донорных состояний по энергии $E_D = 0.3$ eV,

среднеквадратичная ширина распределения донорных состояний по энергии $\sigma_D = 0.1 \, \text{eV}$, концентрация акцепторов в p^+ -области $N_{A0} = 10^{19} \,\mathrm{cm}^{-3}$, глубина залегания максимума гауссовского распределения акцепторных состояний по энергии $E_A = 0.2 \,\text{eV}$, среднеквадратичная ширина распределения акцепторных состояний по энергии $\sigma_A = 0.1 \, \text{eV}$, характеристическая энергия хвоста $N_{ct}(E) = N_{ct0} \exp[(E - E_g)/E_{c0}]$ акцептороподобных состояний зоны проводимости в запрещенной зоне $E_{c0} = 0.025 \,\text{eV}$, характеристическая энергия хвоста $N_{vt}(E, T) = N_{vt0} \exp[-E/E_{v0}(T)]$ донороподобных состояний валентной зоны в запрещенной зоне $E_{v0}(300 \,\mathrm{K}) = 0.045 \,\mathrm{eV}$, корреляционная энергия для обусловленных оборванными связями глубоких дефектных состояний $u = 0.2 \,\text{eV}$, эффективная масса электрона в *a*-Si: H $m_e = 2.78 m_0$, эффективная масса дырки в *a*-Si:H $m_h = 2.34 m_0$.

На рис. 3 и 4 соответственно приведены абсолютные и относительные временные изменения на протяжении половины светового дня таких характеристик солнечных элементов на основе a-Si: H, как ток короткого замыкания, напряжение разомкнутой цепи, фотонапряжение в условиях максимальной отбираемой мощности, фактор заполнения BAX, выходная мощность и КПД. Относительные величины получены делением абсолютных величин на значения, реализующиеся в 12 h дня. Как показали теоретические оценки, полученные зависимости для относительных изменений с точностью не хуже 5% справедливы и для других солнечных элементов, если их КПД находится в диапазоне от 7 до 20%.

Таким образом, в настоящей работе развит теоретический подход к расчету временных зависимостей ключевых характеристик солнечных элементов на основе *a*-Si:H в течение светового дня в любой из дней

1.

3,5

4

6

2

Time, h

года. Конкретная иллюстрация полученных результатов приведена для дней равноденствия. Показано, что относительные временные зависимости приведенных характеристик справедливы и для солнечных элементов на основе других полупроводников.

Список литературы

- Kryuchenko Yu.V., Sachenko A.V., Bobyl A.V., Kostylyov V.P. et al. // Semicond. Phys. Quant. Electron. and Optoelectron. 2012. Vol. 15. N 2. P. 91–116.
- Biometeorology, ESPM 129, Lecture 9, Solar Radiation, Part 2, Earth-Sun Geometry, http://nature.berkeley.edu/biometlab/espm129/pdf/Lecture% 209%20espm%20129.pdf.
- [3] Solar Concepts, http://www.usc.edu/dept/architecture/mbs/ ools/vrsolar/Help/solar_concepts.html.
- [4] http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173.html; http://www.lehigh.edu/imi/docs_pitt/pdf_Pitt/ T2f_Fangman.pdf.
- [5] Christian Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: algorithms and performance assessment (1995), http://www.fsec.ucf.edu/en/publications/ pdf/FSEC-PF-270-95.pdf.