07

Концентраторные фотоэлектрические модули со спектральным расщеплением света с солнечными элементами на основе структур AIGaAs/GaAs/GaSb и GaInP/InGaAs(P)

© А.С. Власов, В.П. Хвостиков, Л.Б. Карлина, С.В. Сорокина, Н.С. Потапович, М.З. Шварц, Н.Х. Тимошина, В.М. Лантратов, С.А. Минтаиров, Н.А. Калюжный, Е.П. Марухина, В.М. Андреев

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: Vlasov@scell.ioffe.ru

(Поступило в Редакцию 2 октября 2012 г.)

Разработан концентраторный фотоэлектрический модуль со спектральным расщеплением солнечного света на основе линз Френеля и дихроичных фильтров. В соответствии с оценкой эффективность фотоэлектрического преобразования такого модуля может достигать 49.4% при использовании трех однопереходных элементов, а при комбинации тандемного двухпереходного элемента и узкозонных элементов может быть достигнута 48.5–50.6%. Были получены однопереходные солнечные элементы на основе AlGaAs, GaAs, GaSb, InGa(P)As методом диффузии Zn из газовой фазы в эпитаксиальный слой с проводимостью *n*типа. Каскадные солнечные элементы на основе структуры GaInP/GaAs были выращены методом MOC-гидридной эпитаксии. Общая эффективность трех однопереходных солнечных элементов, разработанных для модуля со спектральным расщеплением света, составила 38.1% (AM1.5D) при степени концентрирования $K_c = 200x$. Комбинация солнечных элементов с использованием каскадных структур показала эффективность 37.9% при концентрациях от 400 до 800 солнц. Были проведены измерения параметров концентраторного фотоэлектрического модуля с системой спектрального расщепления. Достигнута эффективность 24.7% фотоэлектрического преобразования модуля с тремя однопереходными элементами и 27.9% модуля с двух-и однопереходным солнечными элементами.

Введение

В последнее время возобновился интерес к спектральному расщеплению света в фотоэлектрических системах преобразования энергии [1,2]. Несмотря на то что эффективность трехпереходных СЭ уже достигла величин выше 42%, пути дальнейшего увеличения эффективности фотоэлектрического преобразования могут быть связаны со спектральным расщеплением света в основном из-за возможности увеличения числа активных p-n-переходов, которые могут быть получены ростом на различных подложках. В настоящей работе представлено описание разработанной и протестированной концентраторной фотоэлектрической системы со спектральным расщеплением света.

1. Подход

В последние 10 лет в ФТИ им. А.Ф. Иоффе активно разрабатывались концентраторные фотоэлектрические модули. Эти модули состоят из линз Френеля, полученных по технологии "силикон-на-стекле", обеспечивающих степень концентрирования 300–500 солнц, и высокоэффективных трехпереходных СЭ [3,4]. В разработанной системе с расщеплением спектра геометрические размеры линз Френеля были увеличены с 4×4 до 6×6 ст для снижения оптических потерь. Для разложения солнечного спектра были использованы стандартные дихроичные фильтры. Такие оптические компоненты обладают следующими преимуществами: они не изменяют направление распространения света, что позволяет устанавливать их внутри концентраторного модуля, не поглощают свет и могут быть получены простым методом вакуумного напыления. Однако имеется несколько недостатков, ограничивающих область их применения. Дихроичные зеркала не обеспечивают 100% отражения (пропускания), и ширина полосы области отражения (пропускания) ограничена и привязана к абсолютным величинам (т.е. чем шире полоса отражения, тем ниже коэффициент отражения). Для долговременной работы фильтра плотность мощности отраженного света ограничена величиной 1 W/cm², а длина волны отсечки зависит от угла падения света. Две последние особенности являлись определяющими для выбора положения фильтров внутри концентраторного фотоэлектрического модуля.

На рис. 1 представлены две возможные конфигурации системы, которые были реализованы. Место расположения основного фильтра выбрано таким образом, чтобы он был перпендикулярен оптической оси концентраторного модуля. Это сделано по следующей причине: плотность мощности света в этой точке оказывается в пределах допустимых значений, а также эта позиция вырождена по углу вращения, что позволяет оптимизировать этот фильтр для обеспечения минимальных сдвигов отсекаемой длины волны для всего собираемого света, что непосредственно влияет на эффективность преобразования.

Рис. 1. Схематичное изображение двух конфигураций модуля с дихроичными зеркалами, расщепляющими спектр.

Рис. 2. КПД модуля в первом варианте с верхним элементом на основе GaInP/GaAs. Различные кривые соответствуют различным длинам волн, отсекаемым фильтром.

Были рассмотрены три варианта конфигурации системы.

В первом варианте использован один фильтр и два фотоэлектрических элемента. В качестве верхнего СЭ используется хорошо известная высокоэффективная согласованная по току каскадная структура на основе GaInP/GaAs, а в качестве нижнего — однопереходный СЭ, преобразующий излучение ИК-диапазона. Такая комбинация схожа с хорошо изученным подходом механической стыковки СЭ, но без необходимости изготовления прозрачного верхнего элемента.

Во втором варианте, как и в предыдущем случае, используется GaInP/GaAs СЭ, но ИК-часть солнечного спектра разделяется на две части.

В третьем варианте солнечный спектр также разделяется на три части, но для фотоэлектрического преобразования используются три однопереходных элемента. Преимуществом такого подхода является возможность изготовления этих элементов методом жидкофазной эпитаксии и диффузии, что делает их гораздо дешевле.

Были проведены оценки КПД таких модулей в предположении идеальных элементов Шокли (A = 1) и идеальных концентраторов с кратностью концентрирования 300х. Целью данных расчетов являлась оценка возможного КПД системы и получение оптимальных характеристик фильтров. На рис. 2 представлены кривые расчетного КПД для первого варианта системы (элементы соединены последовательно). Для примера представлены несколько кривых, соответствующих различным длинам волн отсечки фильтра. В данном случае может быть достигнут максимальный КПД 48.5%. На рис. 3 представлен КПД ИК-части системы в вариантах 1 и 2. Можно заметить, что увеличение КПД, связанное с использованием 4-го p-n-перехода, составляет всего 2.1%.

Рис. 3. КПД части модуля, преобразующей ИК-излучение, рассчитанный для вариантов 1 и 2.

Рис. 4. Карта КПД, рассчитанного для системы в варианте 3 с GaAs средним элементом.

Такая малая добавка связана с потерями, вызванными использованием дополнительного дихроичного фильтра: всегда присутствуют потери при пропускании, а область перехода между отражением и пропусканием широка.

На рис. 4 представлены результаты расчетов для системы в третьем варианте, в котором в качестве третьего p-n-перехода используется структура на основе GaAs. Максимальная величина КПД, составляющая 49.4%, немного выше, чем в первом варианте, по причине отсутствия туннельного перехода в структуре.

2. Фотоэлектрические элементы

Как уже упоминалось в предыдущем разделе, были реализованы два подхода преобразования видимой части солнечного спектра. В первом используются выращенные методом МОС-гидридной эпитаксии монолитные тандемные элементы на основе структуры GaInP/GaAs. Выходные характеристики элемента представлены на рис. 5. Максимальный КПД, достигнутый для таких

Рис. 5. Напряжение холостого хода, фактор заполнения ВАХ и КПД двухпереходного тандемного СЭ на основе GaInP/GaAs при различных концентрациях (AM1.5D).

Рис. 6. Напряжение холостого хода, фактор заполнения ВАХ и КПД AlGaAs СЭ, выращенного методом ЖФЭ.

Рис. 7. Напряжение холостого хода, фактор заполнения ВАХ и КПД GaAs CЭ, выращенного методом ЖФЭ. КПД рассчитан для спектра, отсекаемого при $\lambda < 690$ nm.

Рис. 8. Напряжение холостого хода, фактор заполнения ВАХ и КПД оптимизированного GaSb CЭ, выращенного методом ЖФЭ. КПД рассчитан для спектра, отсекаемого при $\lambda < 880$ nm.

элементов, составляет 29.2% при концентрации 100*x*, спектр AM1.5D.

Остальные элементы, обсуждаемые далее, были получены методом жидкофазной эпитаксии (ЖФЭ) с диффузией Zn. Эта технология, с одной стороны, гораздо дешевле, чем МОС-гидридная эпитаксия, а с другой — КПД однопереходных элементов, полученных ЖФЭ, может быть таким же, а в некоторых случаях (например, для элементов на основе GaSb) даже выше, чем элементов, выращенных методом газофазной эпитаксии. На рис. 6 и 7 представлены выходные характеристики СЭ на основе AlGaAs ($x_{Al} = 0.3$)- и GaAs-структур, используемых в варианте 3 для преобразования видимой части солнечного спектра. Максимальная эффективность преобразования в 19% была получена на AlGaAsэлементах при концентрации 66x, в то время как GaAs элементы имеют 12.1% при 200х при отсечении спектра на $\lambda = 690$ nm.

Рис. 9. Напряжение холостого хода, фактор заполнения ВАХ и КПД оптимизированного *n*-*p* GaInAs инверсного СЭ с/без предварительной диффузии Р и In.

Рис. 10. Напряжение холостого хода, фактор заполнения ВАХ и КПД оптимизированного *n*-*p* GaInPAs инверсного СЭ.

Для преобразования ИК-части солнечного спектра использовались элементы на основе GaSb, полученные методом двухступенчатой диффузии Zn. Детали технологического процесса изготовления элементов представлены в [5]. Выходные характеристики элементов, использованных в модуле, представлены на рис. 8. КПД таких элементов составил 8% при концентрации 250*х* (AM1.5D).

Элементы на основе GaInAs и GaInAsP изготавливались по инвертной n-p-схеме, где подложка InP используется в качестве широкозонного окна. Эта схема позволяет достигнуть высоких значений фактора заполнения ВАХ при плотностях тока до 10 А/сm² и выше. Структуры подвергались предварительному отжигу слоев в парах фосфора, который ведет к улучшению всех характеристик: внешняя квантовая эффективность, фактор заполнения ВАХ и $V_{\rm oc}$ увеличиваются [3]. На рис. 9 и 10 показаны выходные характеристики элементов на основе GaInAs и GaInAsP ($E_g \sim 1 \, {\rm eV}$). КПД данных элементов

составил 7.4 и 4.1% соответственно при концентрации 500-600x (AM1.5D).

Таким образом, комбинации КПД элементов в различных исполнениях составили: в варианте 1 - 27.5 + +7.4 = 34.9%; в варианте $2 - 27.5 + 4.1 + 0.5 \cdot 7.4 = 35.3\%$ (при концентрации $\sim 500x$); в варианте 3 - 17.6 + 12.1 + 8 = 37.7% при концентрации 200x (AM1.5D).

3. Концентраторный модуль с системой расщепления спектра

КПД СЭ в концентраторном модуле отличаются от значений, измеренных на стенде из-за присутствия в модуле дихроичных зеркал и неоднородного распределения солнечного излучения в фокальной плоскости. Фильтры были изготовлены методом вакуумного напыления слоев прозрачных оксидов на стеклянную подложку.

В таблице обобщены результаты измерений ВАХ концентраторного модуля с системой расщепления спектра на испытательном стенде при различных концентрациях (AM1.5D). Измерения проводились под импульсной лампой солнечного имитатора, снабженной коллиматором.

Необходимо отметить, что ток, генерируемый нижними ИК-элементами в вариантах 1 и 3, примерно в 1.5 раза выше тока элементов, преобразующих видимую часть спектра. Таким образом, избыточный ток может быть скомпенсирован надлежащим параллельным/последовательным соединением 3 × 2 с минимальными энергетическими потерями. Фактически суммарный КПД фотоэлектрического преобразования модуля в варианте 1 составляет 27.9%, в то время как в случае соединения 2 × 3 это значение уменьшается только до 27.7%. Вариант 2 показывает даже более низкий КПД, чем вариант 1, что является результатом неподходящей комбинации запрещенной зоны среднего элемента и характеристик второго фильтра, несмотря на то, что их параметры были подобраны в соответствии с проведенными расчетами. Этот результат указывает на трудности, появляющиеся при использовании схемы с двумя фильтрами: фактическая кривая пропускания

Результаты измерений ВАХ концентраторного модуля с системой расщепления спектра на испытательном стенде при различных концентрациях (AM1.5D)

Вари- ант	CЭ	I _{K3} , mA	КПД, %	Суммарный КПД, %
1	InGaP/GaAs InGaAs	255 387	21.7 6.2	27.9
2	InGaP/GaAs InGaAsP InGaAs	255 138 98	21.7 3.1 1.4	26.2
3	AlGaAs GaAs GaSb	192 203 315	10.6 9.7 4.4	24.7

фильтра может немного отличаться от расчетной, а край поглощения InGaAsP-элемента зависит не только от состава раствора, но и от условий роста. Таким образом, использование четырех переходов сопряжено с существенными трудностями, при том что вклад от четвертого перехода достаточно мал. Таким образом, можно сделать вывод, что в системе с использованием дихроичных зеркал для утилизации четвергого *p*-*n*-перехода необходима разработка монолитного каскадного СЭ на основе GaInAsP/GaInAs для преобразования ИКдиапазона солнечного спектра. КПД системы в третьем варианте намного ниже, чем сумма КПД отдельных элементов, что в первую очередь является результатом нежелательных оптических потерь на AlGaAs-элементе. Суммарный КПД составил 24.7% и 21% при коммутации 2 × 3. Данная комбинация, однако, имеет существенные перспективы для повышения КПД за счет оптимизации широкозонного AlGaAs-элемента для работы при больших плотностях тока.

Заключение

Разработан концентраторный модуль с системой расщепления спектра с линзами Френеля и дихроичными зеркалами. Согласно расчетам, КПД такой системы могут достигать 48–50%. Были предложены и воплощены три варианта системы с различными СЭ и дихроичными зеркалами. Общий КПД СЭ составил от 34.9 до 37.7%. Фотоэлектрический КПД модуля составил 24.7–27.9% с возможностью соединения с минимальными потерями.

Работа выполнена при поддержке Минобрнауки РФ (ГК 16.516.11.6053) и РФФИ (гранты 12-08-00630 и 11-08-12031).

Список литературы

- [1] Barnett A., Kirkpatrick D., Honsberg K. et al. // Prog. Photovolt: Res. Appl. 2009. Vol. 17. P. 75.
- [2] Mitchel B., Peharz G., Siefer G. et al. // Prog. Photovolt: Res. Appl. 2011. Vol. 19 (1). P. 61.
- [3] Карлина Л.Б., Власов А.С., Кулагина М.М., Ракова Е.П., Тимошина Н.Х., Андреев В.М. // ФТП. 2010. Т. 44. Вып. 2. С. 240–245.
- [4] Rumyantsev V.D., Bett A.W., Andreev V.M. // Proc. of the 28th IEEE PVSC. (2000).
- [5] Rumyantsev V.D. // Optics Express. 2010. Vol. 18 (S1). P. A17.