03 Неустойчивость сферической капли в неоднородном электрическом поле

© С.О. Ширяева, А.И. Григорьев, А.А. Ширяев

Ярославский государственный университет им. П.Г. Демидова, 150000 Россия, Ярославль e-mail: shir@uniyar.ac.ru

(Поступило в Редакцию 20 июня 2012 г.)

В аналитических расчетах первого порядка малости показано, что равновесная форма поверхности капли в поле точечного заряда является асимметричной относительно плоскости, проходящей через центр масс капли перпендикулярно оси, соединяющей центр масс с точечным зарядом. Устойчивость равновесной формы определяется величиной полевого параметра, зависящего от величины точечного заряда и расстояния до него. Существует асимптотическое значение критического параметра, при величинах выше которого реализуется неустойчивость всех мод. В поле точечного заряда увеличивается связанность мод, т.е. возбужденная в начальный момент времени мода вызывает колебания связанных с ней шести ближайших мод, амплитуды которых пропорциональны амплитуде изначально возбужденной моды. Если изначально возбужденная мода теряет устойчивость, то одновременно реализуется неустойчивость всех связанных с ней мод. Неустойчивость поверхности капли развивается и в том случае, если изначально возбужденная мода устойчива, однако неустойчива хотя бы одна из связанных мод.

Введение

Задача изучения физических условий реализации неустойчивости незаряженной электропроводной капли во внешнем неоднородном поле точечного заряда представляет интерес в связи с приложениями к проблемам формирования ионно-кластерно-капельных пучков в масс-спектрометрах и жидкометаллических источниках ионов, микро- и макроразделения зарядов в грозовых облаках и формирования канала разряда линейной молнии [1-3]. В работе [4] в экспериментах капля, падая в поле тяжести и пролетая область сильного неоднородного электрического поля, испытывала неустойчивость, при которой она выбрасывала заряженную струйку жидкости, распадающуюся, в свою очередь, на существенно более мелкие заряженные капельки. При этом распад струи происходил в одном из трех режимов: за счет реализации неустойчивости осесимметричных капиллярных волн с азимутальным числом [5] и неосесимметричных с m = 1 [6] и с m = 2 [7]. В настоящем исследовании предполагается изучить закономерности реализации неустойчивости сферической идеально проводящей капли в неоднородном электростатическом поле, напряженность которого убывает обратно пропорционально квадрату расстояния. В качестве примера такого поля выбрано электростатическое поле точечного заряда.

Постановка задачи

Пусть имеется незаряженная капля, сферическая, радиуса R, идеальной, несжимаемой, идеально проводящей жидкости в вакууме, с коэффициентом поверхностного натяжения свободной поверхности σ и массовой плотностью ρ , расположенная на расстоянии L от точечного заряда Q.

Рассмотрим только осесимметричные капиллярные колебания капли, что существенно уменьшит громоздкость математических выкладок, но не отразится на общности рассуждений. Задачу будем решать в сферических координатах r, θ, φ с началом в центре масс капли (ось, от которой отсчитывается угол θ , будем принимать проходящей через заряд и центр масс капли и направленной от заряда). Форму капли представим в виде суперпозиции ее равновесной формы $r = r(\theta)$ и малого возмущения $\xi(\theta, t)$ на ее поверхности:

$$F(r, \theta, t) \equiv r - r(\theta) - \xi(\theta, t) = 0, \quad |\xi(\theta, t)| \ll \min r(\theta).$$

Математическая формулировка задачи состоит из уравнения Эйлера, уравнения неразрывности и уравнений, определяющих напряженность электрического поля в предположении малости гидродинамических скоростей по сравнению со скоростью распространения электромагнитного сигнала:

$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V}, \nabla)\mathbf{V} = -\frac{1}{\rho} \nabla P + \frac{\mathbf{F}_{\text{in}}}{\rho},$$

div $\mathbf{V} = 0$, div $\mathbf{E} = 0$, $\mathbf{E} = -\nabla \Phi$.

Здесь V — скорость волнового движения жидкости в капле, P — давление в жидкости, \mathbf{F}_{in} — сила инерции, действующая на единицу объема, которая возникает вследствие ускоренного движения центра масс капли при втягивании поляризованной капли в область большей неоднородности электрического поля, \mathbf{E} и Φ — напряженность и потенциал электростатического поля точечного заряда.

Задачу дополним условием ограниченности скорости в центре масс капли и условием убывания электростатического потенциала с увеличением расстояния

$$\begin{aligned} r &= 0: \qquad |\mathbf{V}| < \infty, \\ r &\to \infty: \qquad \Phi \to \frac{Q}{\sqrt{L^2 + r^2 + 2Lr\mu}}, \quad \mu \equiv \cos\theta, \end{aligned}$$

~

1 - - - 1

а также граничными условиями: динамическим, кинематическим и условием эквипотенциальности поверхности капли

$$\begin{aligned} r &= r(\theta) + \xi(\theta, t): \qquad P - P_{\text{atm}} + P_E = P_{\sigma}, \\ \frac{\partial \mathbf{F}}{\partial t} + (\mathbf{V}, \boldsymbol{\nabla})\mathbf{F} = \mathbf{0}, \quad \Phi = \text{const}, \end{aligned}$$

где давление на свободную поверхность капли электростатического поля P_E и капиллярное давление P_{σ} выражаются формулами

$$P_E = rac{\mathbf{E}^2}{8\pi}, \quad P_\sigma = \sigma ext{ div } \mathbf{n}.$$

Орт нормали к возмущенной поверхности капли п определяется выражением

$$\mathbf{n} = \frac{\boldsymbol{\nabla}F}{|\boldsymbol{\nabla}F|}\Big|_{F=0}$$

Исходя из общефизических соображений, дополним задачу условиями: сохранения объема капли (следствие несжимаемости жидкости), неподвижности центра масс капли в выбранной системе координат при колебаниях ее поверхности и незаряженности капли:

где к — поверхностная плотность заряда, определяемая выражением

$$\kappa \equiv \frac{(\mathbf{F},\mathbf{n})}{4\pi}.$$

Для удобства расчетов перейдем к безразмерным переменным, выбирая в качестве основных масштабов обезразмеривания R = 1, $\rho = 1$, $\sigma = 1$. При этом все остальные величины будут выражены в долях своих характерных значений

$$[V] = R^{-1/2} \rho^{-1/2} \sigma^{1/2}, \quad [P] = \sigma R^{-1},$$

$$[Q] = R^{3/2} \sigma^{1/2}, \quad [t] = R^{3/2} \rho^{1/2} \sigma^{-1/2}.$$

Условимся за безразмерными величинами сохранять старые обозначения.

4* Журнал технической физики, 2013, том 83, вып. 5

Скаляризация задачи

Поскольку в поставленной задаче исследуются движения жидкости, связанные с малыми колебаниями свободной поверхности, воспользуемся моделью потенциального течения жидкости, в рамках которой поле скоростей V определяется гидродинамическим потенциалом $\psi(r, \theta, t)$: **V** = $\nabla \psi$. Переходя к электрическому $\Phi(r, \theta, t)$ и гидродинамическому $\psi(r, \theta, t)$ потенциалам, получим систему скалярных уравнений, в безразмерных переменных имеющую вид

o 1

1

1

$$\begin{split} P &= P_0 + F_{\rm in} r \mu - \frac{\partial \psi}{\partial t} - \frac{1}{2} (\nabla \psi)^2, \quad \nabla \psi = 0, \quad \Delta \Phi = 0, \\ r &= 0: \qquad |\nabla \psi| < \infty, \\ 1 \ll r \ll L: \qquad \Phi \to \frac{Q}{\sqrt{L^2 + r^2 + 2Lr\mu}}, \\ r &= r(\theta) + \xi(\theta, t): \quad P_0 + F_{\rm in} r \mu - \frac{\partial \psi}{\partial t} \\ &\quad - \frac{1}{2} (\nabla \psi)^2 - P_{\rm atm} + P_E = P_{\sigma}, \\ - \frac{\partial \xi}{\partial t} + \left(\frac{\partial \psi}{\partial r} + \frac{1}{r^2} \frac{\partial \psi}{\partial \theta} \left(-\frac{\partial r(\theta)}{\partial \theta} - \frac{\partial \xi(\theta, t)}{\partial \theta} \right) \right) = 0, \\ \Phi &= {\rm const}, \\ P_E &= \frac{(\nabla \Phi)^2}{8\pi}, \quad P_{\sigma} = {\rm div} \, \mathbf{n}, \\ \mathbf{n} &= \left(\mathbf{e}_r + \mathbf{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} [-r(\theta) - \xi(\theta, t)] \right) \\ &\quad \times \left[1 + \frac{1}{r^2} \left(-\frac{\partial r(\theta)}{\partial \theta} - \frac{\partial \xi(\theta, t)}{\partial \theta} \right)^2 \right]^{-1/2}, \\ \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{r(\theta) + \xi(\theta, t)} r^2 \sin \theta dr d\theta d\varphi = \frac{4}{3}\pi, \\ \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\pi} (\nabla \Phi, \mathbf{n}) r^2 d\theta d\varphi = 0, \\ \int_{0}^{2\pi} \int_{0}^{\pi} (\nabla \Phi, \mathbf{n}) r^2 d\theta d\varphi = 0, \end{split}$$

где \mathbf{e}_r и \mathbf{e}_{θ} — орты сферической системы координат.

Выписанную задачу будем решать асимптотическим методом, предполагая, что искажение равновесной поверхности капли $\xi(\theta, t)$ мало и, как следствие, мала скорость течения жидкости, вызванного колебаниями поверхности $|\psi(r, \theta, t)| \approx |\xi(\theta, t)|$. Рассмотрение ограничим нулевым и первым порядками малости по амплитуде осцилляций $\xi(\theta, t)$, представляя искомые величины в виде суммы компонент указанных порядков:

$$\begin{split} \Phi &= \Phi^{(0)} + \Phi^{(1)} + \mathcal{O}(\xi^2), \quad P_E = P_E^{(0)} + P_E^{(1)} + \mathcal{O}(\xi^2), \\ P_\sigma &= P_\sigma^{(0)} + P_\sigma^{(1)} + \mathcal{O}(\xi^2), \quad P = P^{(0)} + P^{(1)} + \mathcal{O}(\xi^2). \end{split}$$

Проводя процедуру линеаризации стандартными методами, получим задачу нулевого порядка для определения равновесной формы поверхности и задачу первого порядка для анализа устойчивости поверхности.

Равновесная форма поверхности

Равновесную форму поверхности капли представим как

$$F^{(0)}(r,\theta) \equiv r - r(\theta) = 0.$$

Функция $r(\theta)$ определяется из баланса давлений на поверхности капли

$$P^{(0)} - P_{\rm atm} + P_E^{(0)} = P_{\sigma}^{(0)},$$

выражения для гидродинамического давления, давления электрического поля и давления капиллярных сил имеют вид

$$r = r(\theta): \qquad P^{(0)} = P_0 + F_{\text{in}}^{(0)} r \mu,$$
$$P_E^{(0)} = \frac{\left(\nabla \Phi^{(0)}\right)^2}{8\pi}, \quad P_{\sigma}^{(0)} = \text{div} \,\mathbf{n}_0,$$

где \mathbf{n}_0 — орт нормали к невозмущенной поверхности капли, он определяется выражением

$$\mathbf{n}_{0} = \left(\mathbf{e}_{r} - \mathbf{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} \left[r(\theta)\right]\right) \left[1 + \frac{1}{r^{2}} \left(\frac{\partial r(\theta)}{\partial \theta}\right)^{2}\right]^{-1/2}$$

Распределение электростатического поля вблизи поверхности капли определяется через решение краевой задачей для электрического потенциала

$$egin{aligned} \Delta \Phi^{(0)} &= 0, \quad \Phi^{(0)} ig|_{1 \ll r \ll L} o \Phi_{\infty}, \ \Phi_{\infty} &\equiv rac{Q}{\sqrt{L^2 + r^2 + 2Lr\mu}}, \quad \Phi^{(0)} ig|_{r=r(heta)} = ext{const} \end{aligned}$$

Решение должно удовлетворять дополнительным условиям: постоянства объема, неподвижности ее центра масс и равенства нулю полного заряда капли

$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{r(\theta)} r^{2} \sin\theta dr d\theta d\varphi = \frac{4}{3}\pi,$$
$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{r(\theta)} \mathbf{r} r^{2} \sin\theta dr d\theta d\varphi = 0,$$
$$\int_{0}^{2\pi} \int_{0}^{\pi} \frac{1}{4\pi} (\mathbf{n}_{0}, \nabla \Phi^{(0)}) r^{2} \big|_{r=r(\theta)} d\theta d\varphi = 0.$$

Будем полагать, что электрическое поле в окрестности капли слабо неоднородно, что правомерно, если расстояние от центра масс-капли до заряда много больше ее радиуса. В безразмерных переменных это соотношение имеет вид

$$1/L \ll 1.$$

Величина 1/*L* будет служить малым параметром в настоящем разделе.

В сферических координатах форму поверхности капли запишем в виде разложения по полиномам Лежандра [8]

$$r(\theta) = \sum_{n=0}^{\infty} \alpha_n P_n(\mu).$$

Подставляя это разложение в условия постоянства объема капли и неподвижности ее центра масс, получим приближенное выражение для коэффициента α_0 и значение α_1 соответственно

$$\alpha_0 = 1 + O\left(\frac{\alpha_n^2}{\alpha_0^2}\right) \approx 1, \quad \alpha_1 = 0,$$

с учетом выражений для α_0 - и α_1 -разложения форма поверхности $r(\theta)$ и выражение для вектора нормали \mathbf{n}_0 в линейном по α_n приближении будут иметь вид

$$r(heta) = 1 + \sum_{n=2}^{\infty} \alpha_n P_n(\mu), \quad \mathbf{n}_0 = \mathbf{e}_r - \mathbf{e}_{ heta} \frac{1}{r} \frac{\partial}{\partial \theta} \sum_{n=2}^{\infty} \alpha_n P_n(\mu).$$

Решение уравнения Лапласа в электростатической задаче в сферических координатах для осесимметричного случая записывается в виде

$$\Phi^{(0)} = \sum_{n=0}^{\infty} (A_n r^n + B_n r^{-(n+1)}) P_n(\mu).$$

Пользуясь предположением о слабой неоднородности поля и полагая, что даже на больших расстояниях от поверхности капли $(r \gg 1)$ значение параметра r/L остается малым $r/L \ll 1$, разложим граничное условие для потенциала на больших расстояниях до слагаемых порядка $(r/L)^2$ включительно

$$1 \ll r \ll L$$
: $\Phi^{(0)} \approx \frac{Q}{L} \left[1 - \frac{r}{L} P_1(\mu) + \frac{r^2}{L^2} P_2(\mu) \right].$

Подставляя выражение для потенциала и равновесной формы капли в это разложение и условие эквипотенциальности, определим константы A_n и B_n , а из условия незаряженности капли получим значение потенциала на поверхности капли Q/L. В результате выражение для электрического потенциала $\Phi^{(0)}$ в окрестности капли примет вид

$$\Phi^{(0)} = \frac{Q}{L} + \frac{Q}{L^2} \left(-r + \frac{1}{r^2} \right) P_1(\mu) + \frac{Q}{L^3} \left(r^2 - \frac{1}{r^3} \right) P_2(\mu).$$
(1)

Используя явный вид потенциала $\Phi^{(0)}$, рассчитаем давление электрического поля на поверхность капли P_E ,

ограничивая рассмотрение слагаемыми до $1/L^3$ включительно

$$P_E^{(0)} = \left(\frac{Q}{L}\right)^2 \frac{3}{8\pi} \left[\frac{1}{L^2} - \frac{1}{L^3} 4P_1(\mu) + \frac{1}{L^2} 2P_2(\mu) - \frac{1}{L^3} 6P_3(\mu)\right],$$

где общий множитель $(Q/L)^2$ отвечает за величину внешнего электрического поля и в разложении по порядкам малости 1/L не учитывается.

Лапласовское давление $P_{\sigma}^{(0)}$ с учетом вида формы равновесной поверхности примет вид

$$P_{\sigma}^{(0)} = \left[2 + \sum_{n=2}^{\infty} \alpha_n (n-1)(n+2) P_n(\mu)\right].$$

Подставим выражения для $P_{\sigma}^{(0)}$ и $P_{E}^{(0)}$ в баланс давлений

$$P_{0} + F_{in}^{(0)} r \mu - P_{atm} - \left[1 + \sum_{n=2}^{\infty} \alpha_{n} (n-1)(n+2) P_{n}(\mu) \right]$$
$$= - \left(\frac{Q}{L} \right)^{2} \frac{3}{8\pi} \left[\frac{1}{L^{2}} - \frac{1}{L^{3}} 4 P_{1}(\mu) + \frac{1}{L^{2}} 2 P_{2}(\mu) - \frac{1}{L^{3}} 6 P_{3}(\mu) \right].$$

Пользуясь ортогональностью полиномов Лежандра, приравняем коэффициенты при полиномах одинакового порядка и получим выражения для коэффициентов α_n

$$P_{0} = 2\sigma + P_{\text{atm}} - 6\frac{W}{L^{2}}, \quad F_{\text{in}} = -24\frac{W}{L^{3}},$$
$$\alpha_{2} = 3\frac{W}{L^{2}}, \quad \alpha_{3} = -\frac{18}{5}\frac{W}{L^{3}},$$
$$\alpha_{n} = 0, \quad (n \ge 4), \quad W = \frac{Q^{2}}{16\pi L^{2}},$$

где параметр *W* характеризует величину электрического поля.

С учетом выражений для коэффициентов запишем форму равновесной поверхности

$$r(\theta) = 1 + 3 \frac{W}{L^2} P_2(\mu) - \frac{18}{5} \frac{W}{L^3} P_3(\mu).$$

В постановке задачи предполагалось, что \mathbf{F}_{in} — это сила инерции, отвечающая за дипольное взаимодействие капли с электрическим полем. Чтобы удостовериться в этом, рассчитаем дипольный момент поляризованной внешним электрическим полем капли по формуле

$$\mathbf{p} = \iint_{S} \frac{\left(-\nabla\Phi^{(0)}, \mathbf{n}\right)}{4\pi} \mathbf{r} r^{2} \sin\theta d\theta d\varphi$$
$$\{S: \quad r = r(\theta), \ 0 \le \theta \le \pi, \ 0 \le \varphi \le 2\pi\}.$$

В итоге получим

r

$$\mathbf{p}=\frac{Q}{L^2}\,\mathbf{e}_z.$$

Сила взаимодействия дипольного момента капли с полем будет иметь вид

$$r = 0$$
: $\mathbf{F}_e = \nabla \left(\mathbf{p}, \left(- \nabla \Phi_\infty \right) \right) = -2 \frac{Q^2}{L^5} \mathbf{e}_z.$

Поскольку в уравнении Эйлера используются силы, действующие на единицу объема, получим следующее выражение для **F**_{in}:

$$\mathbf{F}_{\rm in} = rac{3\mathbf{F}_e}{4\pi} = -rac{3}{2\pi} rac{Q^2}{L^5} \mathbf{e}_z = -24 rac{W}{L^3} \mathbf{e}_z,$$

которое согласуется со значением, получаемым из баланса давлений.

Устойчивость равновесной формы

Задача первого порядка малости, полученная из исходной системы уравнений, имеет вид

$$\Delta \psi = 0, \quad \Delta \Phi^{(1)} = 0,$$

 $ightarrow 0: \qquad |oldsymbol{
abla} \psi| < \infty, \quad r
ightarrow \infty: \qquad \Phi^{(1)}
ightarrow 0$

граничные условия на поверхности: динамическое, кинематическое и условие эквипотенциальности

$$\begin{split} r &= r(\theta): \qquad P^{(1)} + P^{(1)}_E = P^{(1)}_{\sigma}, \\ &- \frac{\partial \xi(\theta, t)}{\partial t} + \frac{\partial \psi(r, \theta, t)}{\partial r} - \frac{\partial \psi(r, \theta, t)}{\partial \theta} \frac{\partial r(\theta)}{\partial \theta} = 0, \\ &\Phi^{(1)} + \frac{\partial \Phi^{(0)}}{\partial r} \xi(\theta, t) = \text{const}, \end{split}$$

выражения для поправок первого порядка малости к давлениям гидродинамического, электрического поля и капиллярных сил:

$$\begin{split} r &= r(\theta): \qquad P^{(1)} = F_{\rm in}\xi(\theta,t)\mu - \frac{\partial\psi(r,\theta,t)}{\partial t}, \\ P_E^{(1)} &= \frac{\partial}{\partial r} \left(\frac{\left(\nabla\Phi^{(0)}\right)^2}{8\pi}\right)\xi(\theta,t) + \frac{\left(\nabla\Phi^{(0)}\nabla\Phi^{(1)}\right)}{4\pi}, \\ P_{\sigma}^{(1)} &= \left[-2\xi(\theta,t) - \Delta_{\theta}\xi(\theta,t)\right] - 2\frac{\partial r(\theta)}{\partial \theta}\frac{\partial\xi(\theta,t)}{\partial \theta} \\ &+ 2\left(r(\theta) - 1\right)\left[\Delta_{\theta}\xi(\theta,t)\right] + 2\xi(\theta,t)\left[\Delta_{\theta}r(\theta)\right], \\ \Delta_{\theta} &\equiv \frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) \end{split}$$

и интегральные условия: сохранения объема, неподвижности центра масс и незаряженности капли

$$\int_{0}^{\pi} r^{2}(\theta)\xi(\theta,t)\sin(\theta)d\theta = 0,$$

Журнал технической физики, 2013, том 83, вып. 5

$$\begin{split} & \int_{0}^{\pi} r^{3}(\theta)\xi(\theta,t)\sin\theta d\theta = 0, \\ & \int_{0}^{\pi} \left[\frac{\partial \Phi^{(0)}}{\partial r} 2\xi(\theta,t) + \left(2r(\theta) - 1\right) \left(\frac{\partial^{2}\Phi^{(0)}}{\partial r^{2}} \xi(\theta,t) \right. \\ & \left. + \frac{\partial \Phi^{(1)}}{\partial r} \right) - \frac{\partial \Phi^{(0)}}{\partial \theta} \frac{\partial \xi(\theta,t)}{\partial \theta} - \frac{\partial^{2}\Phi^{(0)}}{\partial r\partial \theta} \frac{\partial r(\theta)}{\partial \theta} \xi(\theta,t) \\ & \left. - \frac{\partial \Phi^{(1)}}{\partial \theta} \frac{\partial r(\theta)}{\partial \theta} \right] \sin\theta d\theta = 0. \end{split}$$

Решение задачи первого порядка

Решение уравнения Лапласа для гидродинамического потенциала с учетом ограниченности скорости в центре капли имеет вид

$$\psi(r, \theta, t) = \sum_{n=0}^{\infty} V_n(t) r^n P_n(\mu).$$

Подставляя выражения для равновесной формы поверхности и гидродинамического потенциала в кинематическое граничное условие, определим координатную зависимость ξ

$$\xi(\theta, t) = \sum_{n=0}^{\infty} \alpha_n(t) P_n(\mu)$$
(2)

и выразим коэффициенты V_n разложения через амплитуды $\alpha_n(t)$:

$$\begin{split} V_n(t) &= \frac{1}{n} \bigg[\dot{\alpha}_n(t) - 3 \, \frac{W}{L^2} \big(\dot{\alpha}_{n-2}(t) N_{-2}^{(2)}(n) + \dot{\alpha}_n(t) N_0^{(2)}(n) \\ &+ \dot{\alpha}_{n+2}(t) N_2^{(2)}(n) \big) + \frac{18}{5} \, \frac{W}{L^3} \big(\dot{\alpha}_{n-3}(t) N_{-3}^{(3)}(n) \\ &+ \dot{\alpha}_{n-1}(t) N_{-1}^{(3)}(n) + N_1^{(3)}(n-1) \dot{\alpha}_{n+1}(t) + N_3^{(3)}(n) \dot{\alpha}_{n+3}(t) \big) \bigg], \\ &N_k^{(2)}(n) = n(n-1) K_s(2,n+k,n) - K_\theta(2,n+k,n), \\ &N_k^{(3)}(n) = n(n-1) K_s(3,n+k,n) - K_\theta(3,n+k,n). \end{split}$$

Здесь и далее коэффициенты K_s , K_{θ} имеют вид

$$K_{s}(a, b, c) = \left(C_{a,b\ b,0}^{c,0}\right)^{2},$$

$$K_{\theta}(a, b, c) = -\sqrt{a(a+1)b(b+1)}C_{a,0\ b,0}^{c,0}C_{a,-1\ b,1}^{c,0}$$

где $C_{l_1,m_1\ l_2,m_2}^{l,m}$ — коэффициенты Клебша-Гордана [9].

Решение уравнения Лапласа для электрического потенциала первого порядка, удовлетворяющее условию убывания потенциала на бесконечности, запишем в виде

$$\Phi^{(1)} = \sum_{n=0}^{\infty} D_n r^{-(n+1)} P_n(\mu).$$
(3)

Подставляя (1)–(3) в условие эквипотенциальности, получим выражения для D_n через амплитуды возмущения α_n

$$\begin{split} D_n &= \frac{3Q}{L^2} [K_s(1,n-1,n)\alpha_{n-1}(t) + K_s(1,n+1,n)\alpha_{n+1}(t)] \\ &\quad - \frac{5Q}{L^3} [K_s(2,n-2,n)\alpha_{n-2}(t) + K_s(2,n,n)\alpha_n(t) \\ &\quad + K_s(2,n+2,n)\alpha_{n+2}(t)]. \end{split}$$

Чтобы удовлетворить динамическому граничному условию, получим выражения для добавок первого порядка малости по амплитуде возмущения к давлениям капиллярных сил и электрического поля. Подставляя (2) в выражение для капиллярного давления первого порядка, получим для $P_{\sigma}^{(1)}$

$$\begin{split} P_{\sigma}^{(1)} &= \sum_{n=0}^{\infty} \left[\alpha_n(t) \left(2 + n(n+1) + G2_n(0) \right) \right. \\ &+ \alpha_{n+2}(t) G2_n(2) + \alpha_{n-2}(t) G2_n(-2) \\ &+ \alpha_{n+3}(t) G3_n(3) + \alpha_{n+1}(t) G3_n(1) \\ &+ \alpha_{n-1}(t) G3_n(-1) + \alpha_{n-3}(t) G3_n(-3) \right] P_n(\mu), \\ G2_n(m) &= -6 \frac{W}{L^2} \left[K_s(2, n+m, n) \left((n+m) \right. \\ &\times (n+m+1) + 6 \right) K_{\theta}(2, n+m, n) \right], \\ G3_n(m) &= \frac{36}{5} \frac{W}{L^3} \left[K_s(3, n+m, n) \left((n+m) \right. \\ &\times (n+m+1) + 12 \right) K_{\theta}(3, n+m, n) \right]. \end{split}$$

С учетом вида электрических потенциалов (1), (3) и выражений для формы поверхности рассчитаем и электрическое давление $P_E^{(1)}$

$$\begin{split} P_E^{(1)} &= \sum_{n=0}^{\infty} 4W \left(\frac{-18}{L^2} \left(\alpha_n(t) Z_0(n) + \alpha_{n+2}(t) Z_2(n) \right. \\ &+ \alpha_{n-2}(t) Z_{-2}(n) \right) + \frac{15}{L^3} \left(\alpha_{n+3}(t) Z_3(n) + \alpha_{n+1}(t) Z_1(n) \right. \\ &+ \alpha_{n-1}(t) Z_{-1}(n) + \alpha_{n-3}(t) Z_{-3}(n) \right) \bigg) P_n(\mu), \end{split}$$

где $Z_i(n)$ — численные коэффициенты, выражения для которых приведены в Приложении 1.

Эволюционное уравнение

Используя полученные выражения для давлений $P_E^{(1)}$, $P_{\sigma}^{(1)}$, $P^{(1)}_{\sigma}$, $P^{(1)}_{\sigma}$ и формулы для формы поверхности и гидродинамического потенциала, запишем баланс давлений. Перенеся все слагаемые в левую часть, объединим их

Журнал технической физики, 2013, том 83, вып. 5

в одну сумму, после чего, воспользовавшись ортогональностью полиномов Лежандра, получим систему связанных дифференциальных уравнений второго порядка, каждое из которых имеет вид

$$\begin{split} \ddot{\alpha}_{n}(t) + \omega_{n}^{2}\alpha_{n}(t) &- \frac{W}{L^{2}} \Big[C_{-2}^{f}(n)\alpha_{n-2}(t) + C_{-2}^{d}(n)\ddot{\alpha}_{n-2}(t) \\ &+ C_{2}^{f}(n)\alpha_{n+2}(t) + C_{2}^{d}(n)\ddot{\alpha}_{n+2}(t) \Big] - \frac{W}{L^{3}} \Big[C_{-1}^{f}(n)\alpha_{n-1}(t) \\ &+ C_{-1}^{d}(n)\ddot{\alpha}_{n-1}(t) + C_{1}^{f}_{1}(n)\alpha_{n+1}(t) + C_{1}^{d}(n)\ddot{\alpha}_{n+1}(t) \Big] \\ &- \frac{W}{L^{3}} \Big[C_{-3}^{f}(n)\alpha_{n-3}(t) + C_{-3}^{d}(n)\ddot{\alpha}_{n-3}(t) \\ &+ C_{3}^{f}(n)\alpha_{n+3}(t) + C_{3}^{d}(n)\ddot{\alpha}_{n+3}(t) \Big] = 0, \end{split}$$

где ω_n — собственная частота колебаний моды с номером *n*, определяемая выражением

$$\begin{split} \omega_n^2 &= (n-1)(n+2)n - n \frac{W}{L^2} \bigg\{ -24 + 36(n+1) \\ &\times [K_s(1,n-1,n)K_s(1,n,n-1) + K_s(1,n,n+1) \\ &\times K_s(1,n+1,n)] + 9(n-1)(n+2) \\ &\times K_s(2,n,n) + \frac{3(-2+3n+n^2)}{n} K_\theta(2,n,n) \bigg\}, \end{split}$$

а $C_i^f(n)$, $C_i^d(n)$ — численные коэффициенты, выражения для которых приведены в Приложении 2. Заметим, что индексы *n* амплитуд $\alpha_n(t)$ не могут быть отрицательными, поэтому будем считать $\alpha_n(t) = 0$ при n < 0.

Из системы (4), в частности, видно, что в неоднородном электростатическом поле выделенная мода (под выделенной модой будем понимать *n*-ю моду) взаимодействует с шестью ближайшими. В однородном электростатическом поле *n*-я мода взаимодействует только с двумя соседними модами [10,11].

Кроме того, следует отметить, что условия сохранения объема капли и неподвижности ее центра масс определяют величины амплитуд нулевой и первой мод соответственно, которые несложно получить, подставляя в соответствующие интегральные условия неизменности объема и неподвижности центра масс выражение для формы поверхности

$$\begin{aligned} \alpha_0(t) &= -\frac{6}{6} \frac{W}{L^2} \alpha_2(t) + \frac{36}{35} \frac{W}{L^3} \alpha_3(t), \\ \alpha_1(t) &= 3 \left(\frac{162}{175} \frac{W}{L^3} \alpha_2(t) - \frac{27}{35} \frac{W}{L^2} \alpha_3(t) + \frac{24}{35} \frac{W}{L^3} \alpha_4(t) \right) \end{aligned}$$

Так как амплитуды возмущений $\alpha_0(t)$, $\alpha_1(t)$ определены, систему уравнений (4) будем решать для $n \ge 2$ методом последовательных приближений. В нулевом приближении пренебрежем слагаемыми, отвечающими за взаимодействие мод и содержащими малые множители W/L^2 , W/L^3 , система примет вид

$$\ddot{\alpha}_n^0(t) + \omega_n^2 \alpha_n^0(t) = 0, \quad (n \ge 2).$$

Решение этого гармонического уравнения запишется в виде

$$\alpha_n^0(t) = A_n^+ \exp(i\omega_n t) + A_n^- \exp(-i\omega_n t),$$

где $A_n^{\pm} = \text{const.}$

Ограничиваясь в расчетах первым приближением, для вычисления амплитуд $\alpha_n(t)$ получим следующее уравнение

$$\begin{aligned} \alpha_n''(t) + \omega_n^2 \alpha_n(t) &- \frac{W}{L^2} \Big[\Big(C_{-2}^f(n) - \omega_{n-2}^2 C_{-2}^d(n) \Big) \\ &\times \Big[A_{n-2}^+ \exp(i\omega_{n-2}t) + A_{n-2}^- \exp(-i\omega_{n-2}t) \Big] \\ &+ \Big(C_2^f(n) - \omega_{n+2}^2 C_2^d(n) \Big) \Big[A_{n+2}^+ \exp(i\omega_{n+2}t) \\ &+ A_{n+2}^- \exp(-i\omega_{n+2}t) \Big] \Big] - \frac{W}{L^3} \Big[\Big(C_{-1}^f(n) \\ &- \omega_{n-1}^2 C_{-1}^d(n) \Big) \Big[A_{n-1}^+ \exp(i\omega_{n-1}t) \\ &+ A_{n-1}^- \exp(-i\omega_{n-1}t) \Big] + \Big(C_1^f(n) - \omega_{n+1}^2 C_1^d(n) \Big) \\ &\times \Big[A_{n+1}^+ \exp(i\omega_{n+1}t) + A_{n+1}^- \exp(-i\omega_{n+1}t) \Big] \Big] \\ &- \frac{W}{L^3} \Big[\Big(C_{-3}^f(n) - \omega_{n-3}^2 C_{-3}^d(n) \Big) \Big[A_{n-3}^+ \exp(i\omega_{n-3}t) \\ &+ A_{n-3}^- \exp(i\omega_{n-3}t) \Big] + \Big(C_3^f(n) - \omega_{n+3}^2 C_3^d(n) \Big) \\ &\times \Big[A_{n+3}^+ \exp(i\omega_{n+3}t) + A_{n+3}^- \exp(-i\omega_{n+3}t) \Big] \Big] = 0. \end{aligned}$$

Уравнение (5) является неоднородным уравнением второго порядка. Его общее решение ищется в виде суммы общего решения однородного уравнения

$$\alpha_n^{(\text{hom})}(t) = A_n^+ \exp(i\omega_n t) + A_n^- \exp(-i\omega_n t)$$
(6)

и частного решения неоднородного, которое представим в виде суперпозиции экспонент, аналогичных экспонентам, входящим в функцию неоднородности,

$$\alpha_{n\pm m}^{(\text{het})}(t) = B_{n,\pm m}^{+} \exp(i\omega_{n\pm m}t) + B_{n,\pm m}^{-} \exp(-i\omega_{n\pm m}t),$$
(m = 1, 2, 3). (7)

Подставляя (7) в уравнение (5), определим выражения для коэффициентов B_{n+m}^{\pm}

$$m = 2: \qquad B_{n,\pm m}^{\pm} = C_{\pm m}^{s}(n) \frac{W}{L^{2}} A_{n\pm m}^{\pm},$$

$$m = 1, 3: \qquad B_{n,\pm m}^{\pm} = C_{\pm m}^{s}(n) \frac{W}{L^{3}} A_{n\pm m}^{\pm},$$

$$C_{\pm m}^{s}(n) = \frac{C_{\pm m}^{f}(n) - \omega_{n\pm m}^{2} C_{\pm m}^{d}(n)}{\omega_{n}^{2} - \omega_{n\pm m}^{2}}.$$
(8)

Отметим, что, исходя из физических соображений, амплитуды колебаний должны описываться вещественными функциями, поэтому можно записать $B_{n,\pm m}^+ = (B_{n,\pm m}^-)^*$, $A_n^+ = (A_n^-)^*$, где * обозначает комплексное

сопряжение. Используя (6), (7) с учетом соотношений (8) для $B_{n,\pm m}^{\pm}$ и представляя коэффициенты A_n^{\pm} в виде $A_n^{\pm} = \alpha_n \exp(\pm i b_n)$, где a_n и b_n — вещественные константы, запишем выражение для $\alpha_n(t)$ как суперпозицию $\alpha_n^{(\text{hom})}(t)$ и $\alpha_n^{(\text{het})}(t)$:

$$\alpha_{n}(t) = a_{n} \exp[i(\omega_{n}t + b_{n})] + \frac{W}{L^{2}} a_{n\pm 2} \exp[i(\omega_{n\pm 2}t + b_{n\pm 2})]C_{\pm 2}^{s}(n) + \frac{W}{L^{3}} a_{n\pm 1} \exp[i(\omega_{n\pm 1}t + b_{n\pm 1})]C_{\pm 1}^{s}(n) + \frac{W}{L^{3}} a_{n\pm 3} \exp[i(\omega_{n\pm 3}t + b_{n\pm 3})]C_{\pm 3}^{s}(n) + \text{k.c.}$$
(9)

Аббревиатура k.c. обозначает слагаемые, комплексно сопряженные к выписанным. В решении (9) константы a_n и b_n определяются из начальных условий.

Начальные условия

Рассмотрим случай, когда в начальный момент времени возбуждена мода с номером k, амплитуду которой положим равной константе ξ , а скорость движения поверхности в начальный момент примем равной нулю:

$$t = 0$$
: $\alpha_n(t) = \xi \delta_{n,k}, \quad \alpha'_n(t) = 0 \quad (n \ge 2).$ (10)

Подставляя решение (9) в систему начальных условий (10), получим

$$\begin{cases} a_{n}\cos(b_{n}) + \frac{W}{L^{2}}a_{n\pm2}\cos(b_{n\pm2})C_{\pm2}^{s}(n) \\ + \frac{W}{L^{3}}a_{n\pm1}\cos(b_{n\pm1})]C_{\pm1}^{s}(n) \\ + \frac{W}{L^{3}}a_{n\pm3}\cos(b_{n\pm3})C_{\pm3}^{s}(n) = \xi \delta_{n,k}, \\ a_{n}\omega_{n}\sin(b_{n}) + \frac{W}{L^{2}}a_{n\pm2}\omega_{n\pm2}\sin(b_{n\pm2})C_{\pm2}^{s}(n) \\ + \frac{W}{L^{3}}a_{n\pm1}\omega_{n\pm1}\sin(b_{n\pm1})]C_{\pm1}^{s}(n) \\ + \frac{W}{L^{3}}a_{n\pm3}\omega_{n\pm3}\sin(b_{n\pm3})C_{\pm3}^{s}(n) = 0. \end{cases}$$

$$(11)$$

Систему связанных уравнений (11) будем решать методом последовательных приближений.

В нулевом приближении, пренебрегая взаимодействием мод, отбросим все слагаемые, содержащие множители W/L^2 , W/L^3 , после чего система примет вид

$$\begin{cases} a_n^0 \cos(b_n^0) = \xi \delta_{n,k}, \\ a_n^0 \omega_n \sin(b_n^0) = 0, \end{cases}$$

а ее решения при $\omega_n \neq 0$ достаточно очевидны

$$\begin{cases} a_n^0 = \xi \delta_{n,k}, \\ b_n^0 = \pi m, \quad m \in \mathbb{Z}. \end{cases}$$
(12)

В первом приближении запишем систему, учитывая решение (12) в слагаемых, которыми пренебрегли в нулевом приближении. При этом (11) приводится к виду

$$a_{n}\cos(b_{n}) + \frac{W}{L^{2}}a_{n\pm2}^{0}\cos(b_{n\pm2}^{0})C_{\pm2}^{s}(n) + \frac{W}{L^{3}}a_{n\pm1}^{0}\cos(b_{n\pm1}^{0})C_{\pm1}^{s}(n) + \frac{W}{L^{3}}a_{n\pm3}^{0}\cos(b_{n\pm3}^{0})C_{\pm3}^{s}(n) = \xi \delta_{n,k}, a_{n}\omega_{n}\sin(b_{n}) + \frac{W}{L^{2}}a_{n\pm2}^{0}\omega_{n\pm2}\sin(b_{n\pm2}^{0})C_{\pm2}^{s}(n) + \frac{W}{L^{3}}a_{n\pm1}^{0}\omega_{n\pm1}\sin(b_{n\pm1}^{0})C_{\pm1}^{s}(n) + \frac{W}{L^{3}}a_{n\pm3}^{0}\omega_{n\pm3}\sin(b_{n\pm3}^{0})C_{\pm3}^{s}(n) = 0.$$
(13)

Решая систему (13) для различных n, получим, что она дает нетривиальные решения для номеров мод в интервале $k - 3 \le n \le k + 3$:

$$\begin{cases} a_{k} = \xi, \\ \sin(b_{k}) = 0, \end{cases} \begin{cases} a_{k\pm 1} = -\frac{W}{L^{3}} \xi C_{\pm 1}^{s}(k\pm 1), \\ \sin(b_{k\pm 1}) = 0, \end{cases}$$
(14)
$$a_{k\pm 2} = -\frac{W}{L^{2}} \xi C_{\pm 2}^{s}(k\pm 2), \\ \sin(b_{k\pm 3}) = -\frac{W}{L^{3}} \xi C_{\pm 1}^{s}(k\pm 3), \\ \sin(b_{k\pm 3}) = 0. \end{cases}$$

Выражение для функции, описывающей возмущение поверхности капли, $\xi(\theta, t)$ с учетом решений (14) запишется в виде

$$\begin{split} \xi(\theta, t) &= \xi \cos(\omega_{k} t) P_{k}(\mu) \\ &+ \frac{W}{L^{3}} \xi C_{\mp 1}^{s}(k \pm 1) [\cos(\omega_{k} t) - \cos(\omega_{k \pm 1} t)] P_{k \pm 1}(\mu) \\ &+ \frac{W}{L^{2}} \xi C_{\mp 2}^{s}(k \pm 2) [\cos(\omega_{k} t) - \cos(\omega_{k \pm 2} t)] P_{k \pm 2}(\mu) \\ &+ \frac{W}{L^{3}} \xi C_{\mp 3}^{s}(k \pm 3) [\cos(\omega_{k} t) - \cos(\omega_{k \pm 3} t)] P_{k \pm 3}(\mu). \end{split}$$
(15)

Анализ результатов

Заметим, что расчетная форма равновесной поверхности капли совпадает со сфероидальной в линейном по квадрату эксцентриситета приближении. Слагаемое $(-18W/5L^3)P_3(\mu)$ возникает вследствие неоднородности

электрического поля, обусловливая асимметрию формы поверхности капли: ее "вытянутость" в сторону заряда. Увеличение полевого параметра W/L^2 усиливает искажение формы капли.

Для анализа устойчивости равновесной поверхности заметим, что капля устойчива, когда полная амплитуда возмущения поверхности $\xi(\theta, t)$, описываемого выражением (15), ограничена во времени. Это справедливо, когда собственные частоты колебаний мод ω_n , определяющих возмущение $\xi(\theta, t)$, вещественны. Мода колебаний с номером *n* теряет устойчивость, когда квадрат ее частоты проходит через ноль. Из условия $(\omega_n)^2 = 0$ получим выражение для критического значения полевого параметра

$$\binom{W}{L^2}_{cr} = (n-1)(n+2) \bigg\{ -24 + 36(n+1) \\ \times [K_s(1,n-1,n)K_s(1,n,n-1) + K_s(1,n,n+1) \\ \times K_s(1,n+1,n)] + 9(n-1)(n+2)K_s(2,n,n) \\ + \frac{3(-2+3n+n^2)}{n} K_{\theta}(2,n,n) \bigg\}^{-1}.$$

Значения этого параметра в зависимости от номеров мод (которые условно приняты непрерывно изменяющимися) представлены на рис. 1.

Расчеты показывают, что данная кривая имеет горизонтальную асимптотику при значении критического параметра $(W/L^2)_{\rm cr} \approx 0.45$. Из этого следует, что можно задать такое поле, при котором будут неустойчивы все моды осцилляций. Кроме того, из рис. 1 видно, что моды с меньшими номерами теряют устойчивость при меньших значениях полевого параметра, рост которого соответствует росту напряженности и неоднородности электрического поля.

Из полученного выражения (15) следует, что возбуждение единичной k-й моды в начальный момент времени вызывает возбуждение шести соседних мод. Моды с номерами $k \pm 1$, $k \pm 2$, $k \pm 3$ будем называть связанными модами. Из (14) видно, что амплитуды связанных мод

Рис. 1. График зависимости критического параметра $(W/L^2)_{cr}$ от номера моды *n*.

Рис. 2. a — зависимости амплитуд мод колебаний, определяющих возмущение поверхности от времени, рассчитанные при $k = 2, W = 0.3, L = 3, \xi = 0.1$. Штриховой толстой линией нанесена изначально возбужденная мода: k = 2; сплошная толстая — связанная с ней мода k + 1 = 3; штриховая тонкая — связанная мода k + 2 = 4; сплошная тонкая — связанная мода k + 3 = 5. b — то же, что на рис. 2, a, но рассчитано при W = 3.3, L = 10.

пропорциональны амплитуде изначально возбужденной моды $(-\xi)$ и малы по сравнению с ней за счет наличия множителей W/L^2 , W/L^3 . Соотношение амплитуд мод представлено на рис. 2, *a*. При больших значениях параметра *L*, а именно $(L \ge 10)$ вклад связанных мод с номерами $k \pm 2$ более существен, чем с номерами $k \pm 1$, $k \pm 3$, что проиллюстрировано на рис. 2, *b*.

Расчеты показывают, что если в начальный момент полевой параметр достаточно высок и становятся неустойчивыми несколько десятков мод, то амплитуды мод на передней части капли складываются и формируют эмиссионный выступ. При этом на тыловой части амплитуды четных и нечетных мод компенсируют друг друга, как это можно видеть на рис. 3, на котором приведены результаты модельного расчета для суммарного возмущения в 0.3R при одинаковых амплитудах двадцати мод, равных 0.015R.

Важным результатом, следующим из (15), является тот факт, что если изначально возбужденная мода теряет устойчивость, то одновременно с ней становятся неустойчивыми все связанные моды за счет присутствия $\cos(\omega_k t)$ в амплитуде каждой из них. На рис. 4, *а* представлены зависимости амплитуд различных мод от времени для случая, когда величина полевого параметра

Рис. 3. Форма капли, когда возбуждены 20 первых мод.

Рис. 4. *а* — эволюция амплитуд различных мод осцилляций поверхности капли при начальном возбуждении второй моды, рассчитанные при k = 2 W = 0.7, L = 3, $\xi = 0.1$; толстая сплошная линия соответствует k = 2; тонкая сплошная — k + 1 = 3; толстая штриховая — k + 2 = 4; тонкая штриховая — k + 3 = 5. Время выражено в долях характерного масштаба: $[t] = R^{3/2}\rho^{1/2}\sigma^{-1/2}$. *b* — соотношения амплитуд мод капли при начальном возбуждении третьей моды, рассчитанные при k = 3, W = 0.3, L = 3, $\xi = 0.1$; толстая сплошная линия соответствует k - 1 = 2; тонкая плошная — k + 2 = 3; толстая плошная линия соответствует k - 1 = 2; тонкая штриховая — k + 2 = 5; штриховая — k + 3 = 6.

Рис. 5. a — формы поверхности неустойчивой капли при начальном возбуждении второй моды, рассчитанные при k = 2, W = 0.7, L = 3, $\xi = 0.1$; толстая сплошная линия соответствует t = 0; тонкая сплошная — t = T/2; штриховая — t = 3T/2; T — период третьей моды $T = 2\pi/\omega_3$. b — формы поверхности неустойчивой капли при начальном возбуждении третьей моды, рассчитанные при k = 3, W = 1.05, L = 3, $\xi = 0.1$; толстая сплошная — t = T/4; штриховая — t = 7T/8; T — период четвертой моды $T = 2\pi/\omega_4$.

превышает критическое значение для изначально возбужденной основной (второй) моды.

Несложно видеть из рис. 4, a, что хотя при выделенной k-й моде значение полевого параметра критическое для нее, ниже критического значения полевого параметра для мод k + 1, k + 2, k + 3, связанных с k-й, их амплитуды тоже экспоненциально нарастают во времени, сохраняя тем не менее осциллирующий характер.

На рис. 4, *b* представлены аналогичные зависимости, когда изначально возбуждена 3-я мода, а величина полевого параметра (W/L^2) превышает критическое для нее значение: $(W/L^2) > (W/L^2)_{cr,3}$. В этом случае характер возрастания амплитуд основной и третьей мод является чисто экспоненциальным, а осциллирующий характер сохраняется для мод k + 1, k + 2, k + 3, значение критического полевого параметра для которых выше принятого.

На рис. 5 представлены формы поверхности капли в различные моменты времени, рассчитанные для случая

изначально возбужденных в начальный момент неустойчивых мод (основной и третьей соответственно).

Заключение

В проведенных расчетах выяснилось, что с увеличением степени неоднородности поля увеличивается и степень связности мод осцилляций капли, что зависимость полевого параметра от номера моды выходит на насыщение при номерах мод ~ 100 и можно указать такое значение полевого параметра, при котором все моды неустойчивы, что наложение амплитуд неустойчивых мод на вершине капли, обращенной в сторону увеличения неоднородности поля, формирует эмиссионный выступ, выбрасывающий струю жидкости, как это наблюдается в эксперименте [4].

Приложение 1

Выражения для коэффициентов $Z_i(n)$.

$$Z_0(n) = (K_s(1, 1, 0) + K_s(1, 1, 2)K_s(2, n, n) + (K_s(1, n - 1, n)K_s(1, n, n - 1) - 0.5K_s(1, n, n + 1)K_s(1, n + 1, n))(1 + n)),$$

$$Z_2(n) = (K_s(1, 1, 2)K_s(2, n+2, n) - 0.5K_s(1, n+1, n)K_s(1, n+2, n+1)(1+n)),$$

$$Z_{-2}(n) = (K_s(1, 1, 2)K_s(2, n-2, n) - 0.5K_s(1, n-2, n-1)K_s(1, n-1, n)(1+n)),$$

$$Z_3(n) = \left((4K_s(1, 2, 3) - K_\theta(1, 2, 3))K_s(3, n+3, n) - (1+n) \left(K_s(1, n+3, n+2)K_s(2, n+2, n) + K_s(1, n+1, n)K_s(2, n+3, n+1) \right) \right),$$

$$Z_{1}(n) = \left((4K_{s}(1, 2, 1) - K_{\theta}(1, 2, 1))K_{s}(1, n + 1, n) \right. \\ \left. + (4K_{s}(1, 2, 3) - K_{\theta}(1, 2, 3))K_{s}(3, n + 1, n) \right. \\ \left. - (1 + n) \left(K_{s}(1, n + 1, n)K_{s}(2, n, n) \right. \\ \left. + K_{s}(1, n - 1, n)K_{s}(2, n + 1, n - 1) \right. \\ \left. + K_{s}(1, n + 1, n)K_{s}(2, n + 1, n + 1) \right. \\ \left. + K_{s}(1, n + 1, n + 2)K_{s}(2, n + 2, n) \right) \right),$$

$$\begin{split} Z_{-1}(n) &= \left((4K_s(1,2,1) - K_\theta(1,2,1))K_s(1,n-1,n) \\ &+ (4K_s(1,2,3) - K_\theta(1,2,3))K_s(3,n-1,n) \\ &- (1+n) \big(K_s(1,n-1,-2+n)K_s(2,n-2,n) \\ &+ K_s(1,n-1,n)K_s(2,n-1,n-1) \\ &+ K_s(1,1+n,n)K_s(2,n-1,1+n) \\ &+ K_s(1,n-1,n)K_s(2,n,n) \big) \big), \end{split}$$

$$\begin{aligned} Z_{-3}(n) &= \big(4K_s(1,2,3) - K_\theta(1,2,3) \big) K_s(3,n-3,n) \\ &- (1+n) \big(K_s(1,n-1,n)K_s(2,n-2,n) \big). \end{aligned}$$

Приложение 2

Выражения для коэффициентов $C_i^f(n), C_i^d(n)$.

$$\begin{split} C_1^f(n) &= n \big(24K_s(1,n+1,n) + 60(-1-n) \\ &\times \big(K_s(1,n+1,n)K_s(2,n,n) \\ &+ K_s(1,n-1,n)K_s(2,n+1,n-1) \\ &+ K_s(1,1+n,n)K_s(2,n+1,n+1) \\ &+ K_s(1,n+1,n+2)K_s(2,n+2,n) \big) \\ &- 7.2 \big((-16+3n+n^2)K_s(3,n+1,n) \\ &+ K_\theta(3,n+1,n) \big) \big), \end{split}$$

$$\begin{split} C_{-1}^{f}(n) &= n \big(24K_{s}(1,n-1,n) + 60(-1-n) \\ &\times \big(K_{s}(1,-1+n,-2+n)K_{s}(2,n-2,n) \\ &+ K_{s}(1,n-1,n)K_{s}(2,n-1,n-1) \\ &+ K_{s}(1,n+1,n)K_{s}(2,n-1,n+1) \\ &+ K_{s}(1,n-1,n)K_{s}(2,n,n) \big) \\ &+ 7.2 \big((18+n-n^{2})K_{s}(3,n-1,n) \\ &+ K_{\theta}(3,n-1,n) \big) \big), \\ C_{-2}^{f} &= n \big(36(n+1)K_{s}[1,n-2,n-1] \\ &\times K_{s}[1,n-1,n] + 6n(n-3) \\ &\times K_{s}[2,n-2,n] + 6K_{\theta}[2,n-2,n] \big), \\ C_{2}^{f}(n) &= n \big(36(n+1)K_{s}(1,n+1,n) \\ &\times K_{s}(1,2+n,1+n) + \big(6(1+n)(4+n) \big) \big) \end{split}$$

$$\times K_s(2, n+2, n) 6K_{\theta}(2, n+2, n)),$$

$$\begin{split} C_{-3}^{f}(n) &= n \left(-60(n+1) \left(K_{s}(1,n-1,n) \times K_{s}(2,n-3,n-1) + K_{s}(1,n-3,n-2) \times K_{s}(2,n-2,n)\right) + \frac{36}{5} \left((12+5n-n^{2}) \times K_{s}[3,-3+n,n] + K_{\theta}[3,-3+n,n]\right)\right), \\ C_{3}^{f}(n) &= n \left(-60(n+1) \left(K_{s}(1,n+3,n+2) \times K_{s}(2,n+2,n) + K_{s}(1,n+1,n) \times K_{s}(2,n+3,n+1)\right) + \frac{36}{5} \left((6-7n-n^{2}) \times K_{s}(2,n+3,n+1)\right) + \frac{36}{5} \left((6-7n-n^{2}) \times K_{s}(3,n+3,n) + K_{\theta}(3,n+3,n)\right)\right), \\ C_{1}^{d}(n) &= \frac{18K_{\theta}(3,n+1,n)}{5(1+n)}, \\ C_{-1}^{d}(n) &= \frac{18}{5} \left(2K_{s}(3,n-1,n) + \frac{K_{\theta}(3,n-1,n)}{(n-1)}\right), \\ C_{-2}^{d}(n) &= -3 \left(3K_{s}(2,n-2,n) + \frac{K_{\theta}(2,n-2,n)}{(n-2)}\right), \\ C_{-3}^{d}(n) &= \frac{18}{5} \left(4K_{s}(3,n-3,n) + \frac{K_{\theta}(3,n-3,n)}{(n-3)}\right), \\ C_{3}^{d}(n) &= \frac{18}{5} \left(-2K_{s}(3,n+3,n) + \frac{K_{\theta}(3,n+3,n)}{(n+3)}\right). \end{split}$$

Список литературы

- Ширяева С.О., Григорьев А.И. // ЖТФ. 1992. Т. 62. Вып. 3. С. 35–39.
- [2] Ширяева С.О., Григорьев А.И. // ЖТФ. 1992. Т. 62. Вып. 11. С. 49–56.
- [3] Ширяева С.О., Григорьев А.И. Заряженная капля в грозовом облаке. Ярославль: Изд-во ЯрГУ им. П.Г. Демидова, 2008. 535 с.
- [4] *Kim O.V., Dunn P.F. //* Langmuir. 2010. Vol. 26. P. 15 807–15 813.
- [5] Ширяева С.О., Григорьев А.И. // ЭОМ. 2009. № 5. С. 9–17.
- [6] Ширяева С.О. // ЖТФ. 2010. Т. 80. Вып. 4. С. 24-32.
- [7] Григорьев А.И. // ЖТФ. 2009. Т. 79. Вып. 4. С. 36-45.
- [8] Абрамовиц М., Стиган И. Справочник по специальным функциям. М.: Наука, 1979. 830 с.
- [9] Варшалович Д.А., Москалев А.Н., Херсонский В.К. Квантовая теория углового момента. Л.: Наука, 1975. 436 с.
- [10] Григорьев А.И., Синкевич О.А. // Изв. АН СССР. МЖГ. 1985. № 6. С. 10–15.
- [11] Григорьев А.И. // Изв. АН СССР. МЖГ. 1989. № 1. С. 50–55.