04

Влияние продольного распределения плотности тока в токовых слоях на структуру их магнитного поля и динамику их формирования. І. Расчет магнитных полей токовых слоев различной конфигурации

© Г.В. Островская

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: galya_ostr@mail.ru

(Поступило в Редакцию 19 июня 2012 г.)

Приведены результаты численных расчетов структуры магнитных полей токовых слоев при различных распределениях плотности тока по их ширине. Выявлены особенности структуры магнитных полей слоев с двугорбыми распределениями плотности тока.

Введение

Возможность образования токовых слоев при возбуждении в плазме электрического тока, направленного параллельно нулевой линии двумерного (2D) магнитного поля, была предсказана С.И. Сыроватским [1-5]. В большинстве теоретических работ обычно предполагалось, что в 2D-магнитном поле с нулевой линией изначально имеется высокоионизованная пространственно однородная плазма. Силы, возникающие при взаимодействии тока, протекающего через плазму, с 2D-магнитным полем, вызывают движение плазмы, приводящее в конечном итоге к формированию токовых слоев. Аналогичные условия создавались и в большинстве экспериментальных работ [6-13], в которых высокоионизованная плазма (со степенью ионизации ~ 1) создавалась *θ*-разрядом при предварительной ионизации искровыми инжекторами. Как теоретические расчеты, так и результаты экспериментов показали, что в данных условиях возникают токовые слои, плотность тока в которых максимальна вблизи нулевой линии, плавно уменьшается вдоль ширины слоя и резко спадает в направлении, перпендикулярном поверхности слоя.

В последствии в ряде наших работ [14-16] эксперименты по формированию токовых слоев проводились в отсутствие *θ*-разряда, т.е. в плазме, ионизованной только искровыми инжекторами. Начальная степень ионизации плазмы в этом случае составляла ~ 10⁻⁴. Детальному сравнению структуры и динамики плазменных слоев, формируемых в высокоионизованной плазме (с *θ*-разрядом) и в слабо ионизованной плазме (без *θ*-разряда), посвящены наши статьи [17,18]. Характерным является то, что, несмотря на различие исходной степени ионизации плазмы на 4 порядка, концентрации электронов в плазменных слоях, формирующихся в обоих случаях, были величинами одного порядка. Общее же количество электронов в плазменных слоях, формируемых в отсутствие *θ*-разряда, рассчитанное на основе голографических интерферограмм [18], превышало исходное число электронов в плазме, ионизованной

только искровыми инжекторами, на 3–4 порядка. Это свидетельствует о том, что практически все электроны, участвующие в формировании слоя, возникают в этом случае в результате дополнительной ионизации плазмы протекающим через нее током.

Основной особенностью плазменных слоев, образующихся в изначальной слабо ионизованной плазме, является ярко выраженная двугорбая структура продольного распределения электронной концентрации $N_e(x)$: с провалом вблизи нулевой линии и двумя максимуми N_e , симметричными относительно нулевой линии. Своеобразной является и динамика двугорбых слоев: со временем боковые максимумы N_e^{max} быстро увеличиваются по величине и стремительно разбегаются в направлении от оси слоя к периферии, в то время как концентрация электронов в приосевой области $N_e(x \approx 0)$ растет существенно медленнее, чем N_e^{max} .

Известно, что динамика формирования токовых слоев определяется силами взаимодействия токов, текущих вдоль оси z с поперечным магнитным полем $B^{\text{tot}}(x, y)$, которое в свою очередь равно:

$$\mathbf{B}^{\text{tot}}(x, y) = \mathbf{B}^{0}(x, y) + \mathbf{B}^{J}(x, y).$$
(1)

Здесь $\mathbf{B}^0(x, y)$ — начальное поперечное магнитное поле и $\mathbf{B}^J(x, y)$ — магнитное поле, создаваемое током, текущим в пределах слоя. В большинстве цитированных выше работ в качестве $\mathbf{B}^0(x, y)$ использовалось магнитное поле с *x*-линией вида

$$\mathbf{B}^{0}(x, y) = (B_{x}, B_{y}) = (-h_{0}y, -h_{0}x), \qquad (2)$$

где h_0 — градиент исходного поперечного магнитного поля.

С большой вероятностью можно предположить, что существенные различия в пространственном распределении плотности плазмы в слоях, формируемых в присутствии и в отсутствие θ -разряда, сопровождаются также значительным различием в распределениях плотности тока вдоль слоев. Это в свою очередь должно приводить

к изменению структуры магнитного поля (1) и соответственно к изменению поля сил Ампера, ответственных за динамиаку токовых слоев.

Для случая формирования слоев в однородной высокоионизованной плазме, когда слои имеют классическую форму с максимумом в точке x = y = 0, магнитное поле (1) достаточно хорошо исследовано как теоретически [4,5], так и экспериментально [6,7,11–13,19–23]. Данные же о структуре магнитного поля двугорбых токовых слоев практически отсутствуют.

В настоящей работе приведены результаты расчета магнитного поля токовых слоев при различных распределениях плотности тока j(x, y) по их ширине и выявлены отличия структуры магнитных полей двугорбых токовых слоев от соответствующей структуры магнитных полей классических, одногорбых токовых слоев.

В следующей нашей публикации [24] на основе расчетных данных будет проведен сравнительный анализ структуры сил Ампера, определяющих динамику токовых слоев различной конфигурации. Выявленные особенности структуры сил, ответственных за формирование двугорбых токовых слоев, находятся в хорошем согласии с выявленной ранее спецификой формирования двугорбых плазменных слоев [14–18].

1. Расчет магнитного поля токовых слоев разной конфигурации

1.1. Методика расчета

Вычислим компоненты магнитного поля слоя в точке A(x, 0), лежащей на оси x (рис. 1, a). Вклады в **B**_x и в **B**_y-компонент магнитного поля в точке A(x, 0) от элемента тока j(x', y')dx'dy', расположенного в произвольной точке C(x', y') в пределах слоя, равны

$$\delta B_x(x,0) = \frac{2}{c} \frac{j(x',y')\sin\varphi}{r} dx' dy', \qquad (3)$$

$$\delta B_y(x,0) = -\frac{2}{c} \frac{j(x',y')\cos\varphi}{r} \, dx' dy'. \tag{4}$$

Здесь r — расстояние между точками A и C, а φ — угол наклона r относительно оси x. Поскольку $r = l/\cos\varphi$, где l = x' - x, выражения (3) и (4) принимают вид

$$\delta B_x(x,0) = \frac{2}{c} \frac{j(x',y')\sin\varphi\cos\varphi}{l} dx'dy',$$

$$\delta B_y(x,0) = -\frac{2}{c} \frac{j(x',y')\cos^2\varphi}{l} dx'dy',$$

а вклады от вертикальной заштрихованной полоски слоя в магнитное поле в точке A соответственно равны

$$dB_x(x,0) = \frac{2}{c} \left\{ \int_{-a}^{a} \frac{j(x',y')\sin\varphi\cos\varphi}{l} \, dy' \right\} dx, \quad (5)$$

$$dB_{y}(x,0) = -\frac{2}{c} \left\{ \int_{-a}^{a} \frac{j(x',y')\cos^{2}\varphi}{l} \, dy' \right\} dx. \quad (6)$$

Рис. 1. К расчету магнитного поля токового слоя: a — схема расчета; b — результаты расчета магнитного поля однородного токового слоя: I — точный расчет, 2 — расчет по формуле (9), 3 — продольное распределение тока I(x) = const; c — результаты расчета для слоя с распределением $I(x) = I(0)(b^2 - x^2)$: I — точный расчет, 2 — расчет по формуле (9), 3 — продольное распределение тока I(x).

Поскольку распределение плотности тока j(x, y) в слоях, формируемых в двумерных магнитных полях вида (2), всегда симметрично относительно осей x и y, первый из этих интегралов равен нулю, в силу нечетности подынтегральной функции. Соответственно тангенциальная компонента B_x магнитного поля всегда равна нулю при y = 0, т.е. на оси x.

Для упрощения дальнейших расчетов будем считать, что вклад от вертикальной заштрихованной полоски слоя можно в первом приближении заменить вкладом от зачерненного элемента, лежащего на оси *x*, если в его пределах протекает ток, равный

$$I(x') = \int_{-a}^{a} j(x', y') \, dy'.$$
(7)

В этом приближении (6) принимает вид

$$dB_y(x,0) \approx -\frac{2I(x')dx'}{c(x'-x)}dx'.$$
(8)

Проинтегрировав (8) по x', получим B_y^J в точке A(x, 0)

$$B_{y}^{J}(x,0) \approx -\frac{2}{c} \int_{-b}^{b} \frac{I(x')dx'}{(x'-x)}.$$
(9)

Для иллюстрации возможности использования такого приближенного подхода на рис. 1, *b* представлены результаты точного (1) и приближенного (2) расчетов продольного распеределения *y*-компоненты магнитного поля для однородного по ширине слоя с I(x) = const = I(0) и на рис. 1, *c* для слоя с $I(x) = I(0)(1 - x^2/b^2)$.

При точном расчете предполагалось, что ширина слоев *b* превышала их толщину *a* в 10 раз. Значения I(x) на рис. 1, *b*, *c* отнесены к I(0), а $B_y(x)$ к $4J_z/cb$, где J_z — полный ток, текущий в пределах слоя шириной 2*b*.

Как видно из рисунка, в обоих случаях точные и приближенные значения практически совпадают как внутри, так и вне слоев. Исключением является небольшая область, примыкающая к краям однородного слоя, где скачкообразно (от I(0) до 0) изменяется величина I(x). При приближении к точкам $x = \pm b$ значения B_y , рассчитанные по формуле (9), стремятся к бесконечности, в то же время точный расчет дает $B_y(\pm b) \cong \pm 4J_z/cb$. Таким образом, приближение (9) может быть использовано при выполнении двух условий: отсутствии резких скачков функции I(x) и существенном превышении ширины слоя 2b относительно его толщины 2a.

Что касается тангенциальной компоненты магнитного поля токового слоя, то она, как уже отмечалось, равна нулю на оси x и максимальна вблизи поверхности слоя, т.е. при y = a. В принятом ранее приближении вычислим магнитное поле $B_x(x, a)$ в точке A(x, a), лежащей на поверхности слоя (рис. 1, a). Вклад в $B_x(x, a)$ от элемента тока, расположенного на оси слоя в точке $C_0(x', 0)$, равен

$$dB_x(x, a) = \frac{2}{c} \frac{I(x')\sin\psi}{r} \, dx' = \frac{2a}{c} \frac{I(x')}{r^2} \, dx'.$$

Здесь r — расстояние между точками A и C, равное $r = [(x - x')^2 + a^2]^{0.5}$, а ψ — угол наклона r относительно оси x, синус которого равен $\sin \psi = a/r$. Соответственно $B_x(x, a)$ равно

$$B_x(x,a) = \frac{2a}{c} \int_{-b}^{b} \frac{I(x')dx'}{(x'-x)^2 + a^2}.$$
 (10)

Подынтегральное выражение в (10) представляет собой произведение двух функций, первая из которых I(x') — пологая, а вторая имеет ярко выраженный максимум при x' = x. В соответствии с этим медленно меняющуюся фукнцию можно вынести за знак интеграла. Выполнив интегрирование, получим

$$B_x(x, a) \approx \frac{2a}{c} I(x) \int_{-b}^{b} \frac{dx'}{(x' - x)^2 + a}$$
$$= \frac{2}{c} I(x) \left[\operatorname{arctg} \frac{b - x}{a} + \operatorname{arctg} \frac{b + x}{a} \right]. \quad (11)$$

Таким образом, распределение тангенциальной компоненты магнитного поля вдоль границы слоя с точностью до функции

$$f(x) = \left[\operatorname{arctg} \frac{b-x}{a} + \operatorname{arctg} \frac{b+x}{a} \right]$$

воспроизводит зависимость I(x). При x = 0 и $|a| \ll |b|$ $f(0) \approx \pi$ и слабо зависит от x во всей области, где |b - x| > |a|.

В соответствии с (11) максимальное значение $B'_x(0, a)$ равно

$$B_x(0,a) \approx \frac{2\pi}{c} I(0). \tag{12}$$

Как известно, *x*-компоненты сил Ампера, ответственные за течение плазмы вдоль ширины слоя, равны $F_x = -j_z B_y$, т.е. определяются *y*-компонентой магнитного поля. Поэтому основное внимание в настоящей работе будет уделено исследованию влияния вида функции I(x) на продольные распределения $B_y(x, 0)$.

1.2. Нейтральный токовый слой

Нейтральными называют токовые слои, суммарное магнитное поле (1) в пределах которых равно нулю. Возможность возникновения таких слоев в магнитных полях с *х*-линией (2) была теоретически предсказана Сыроватским [4,5]. В отсутствие обратных токов и в условиях высокой проводимости плазмы компоненты магнитного поля вблизи нейтрального слоя распределены следующим образом: при $|x| \leq b$

$$B_x pprox h_0 \sqrt{b^2 - x^2}$$
 и $B_y pprox 0,$

а при $|x| \ge b$

$$B_x \approx 0$$
 и $B_y \approx \pm h_0 \sqrt{x^2 - b^2}$. (13)

Распределение поверхностной плотности тока в пределах нейтрального токового слоя описывается соотношением [4,5]

$$I_z(x) = \frac{ch_0}{2\pi} \sqrt{b^2 - x^2},$$
 (14)

Рис. 2. *а* — структура магнитных силовых линий начального магнитного поля (2); *b* — структура магнитного поля в окрестности нейтрального токового слоя [4].

а $I(0) = \frac{ch_0 b}{2\pi}$. На рис. 2, *а* представлена структура силовых линий начального магнитного поля (2) с нулевой линией, совпадающей с осью *z*, т.е. проходящей через точку 0, а на рис. 2, *b* показана структура поля в окрестности нейтрального токового слоя по данным [4,5]. В этом случае магнитное поле равно нулю на участке плоскости (*x*, *z*), ширина которого равна 2*b*.

Поскольку в пределах нейтрального слоя магнитное поле равно нулю, а за пределами слоя равна нулю плотность тока j_z , то равны нулю и силы Ампера $F_x = -j_z B_y$, отвественные за расширение слоя вдоль оси *x*. Такое равновесное состояние токового слоя может достигаться при вполне определенных соотношениях между градиентом h_0 исходного магнитного поля, шириной слоя 2*b* и полным током, текущим в пределах слоя. Связь между этими параметрами найдем, вычислив полный ток, протекающий в пределах слоя,

$$J_{z}^{0} = \frac{ch_{0}}{2\pi} \int_{-b}^{b} \sqrt{b^{2} - x^{2}} dx = \frac{ch_{0}b^{2}}{4}.$$
 (15)

Соответственно I(0) для нейтрального токового слоя равно $I(0) = 2J_z^0/(\pi b)$.

Вычислим нормальную компоненту собственного магнитного поля слоя с продольным распределением тока вида

$$I_z(x) = I(0)\sqrt{1 - x^2/b^2},$$

где $I(0) = 2/(\pi b)J_z$. Подставив $I_z(x)$ в (9) и произведя замену переменной $x' = b \sin \xi$, получим

$$B_{y}^{J}(x,0) \approx -\frac{4J_{z}}{\pi bc} \int_{-\pi/2}^{\pi/2} \frac{\cos^{2}\xi d\xi}{(\sin\xi - x/b)}$$

Умножив числитель и знаменатель подынтегрального выражения на $\sin \xi + x/b$, получим

$$B_{y}^{J}(x,0) \cong -\frac{4J_{z}}{\pi bc} \Biggl\{ \int_{-\pi/2}^{\pi/2} \frac{(\cos^{2}\xi)(\sin\xi)d\xi}{(\sin^{2}\xi - x^{2}/b^{2})} + \frac{x}{b} \int_{-\pi/2}^{\pi/2} \frac{\cos^{2}\xi d\xi}{(\sin^{2}\xi - x^{2}/b^{2})} \Biggr\}.$$
 (16)

Первый из этих интегралов равен 0, поскольку подынтегральная функция нечетная. Второй же интеграл равен

$$\int_{-\pi/2}^{\pi/2} \frac{\cos^2 \xi \, d\xi}{\sin^2 \xi - x^2/b^2} = \begin{cases} -\pi \quad \text{при} \quad (x/b)^2 \le 1, \\ -\pi \left(1 - \sqrt{1 - b^2/x^2}\right) \\ \text{при} \quad (x/b)^2 > 1. \end{cases}$$

Подставив эти значения в (16), получим

$$B_{y}^{J}(x,0) = \frac{4J_{z}x}{cb^{2}} \quad \text{при} \quad (x/b)^{2} \leq 1,$$

$$B_{y}^{J}(x,0) = \frac{4J_{z}x}{cb^{2}} \left(1 - \sqrt{1 - \frac{b^{2}}{x^{2}}}\right) \quad \text{при} \quad (x/b)^{2} > 1.$$
(17)

Таким образом, при произвольном соотношении параметров b и J_z продольный градиент собственного магнитного поля в пределах токового слоя равен

$$h^{J} = \frac{\partial B_{y}^{J}}{\partial x} = \frac{4J_{z}}{cb^{2}},$$
(18)

и только в случае выполнения условия (15), когда $J_z = J_z^0 = ch_0 b^2/4$, $h^J = -h_0$, а суммарное поле $B_y^{\text{tot}} = B_y^0 + B_y^J = 0$. Именно в этом случае уравнения (17) полностью совпадают с (13).

При других значениях тока J_z , $|h^J|$ может быть как меньше, так и больше $|h_0|$, и соответственно суммарное магнитное поле B_y^{tot} может как совпадать по направлению с исходным полем $B_y^0 = -h_0 x$, так и иметь противоположное направление.

1.3. Расчет магнитного поля классических токовых слоев различной формы

Под классическими слоями здесь понимаем слои, симметричные относительно точки x = 0, с максимумом $I_z(x)$ при x = 0 и плавным уменьшением $I_z(x)$ до 0 при $x = \pm b$.

На рис. 3, *а* приведены распределения тока $I_z(x)$ вдоль слоя для случая нейтрального слоя $I_1(x) = I_1(0)[1 - x^2/b^2]^{1/2}$ (кривая *I*) и для распределе-

Рис. 3. Результаты расчета магнитного поля классических токовых слоев: a — продольные распределения токов $I_1(x)$, $I_2(x)$, $I_3(x)$; b — распределение *y*-компоненты магнитного поля токовых слоев B_y^J (кривые 1-3) и начального магнитного поля (прямая 4); c — распределение *y*-компоненты полного магнитного поля B_y^{tot} (кривые 1-3) и начального магнитного поля (прямая 4).

ний $I_2(x) = I_2(0)[1 - x^2/b^2]$ (кривая 2) и $I_3(x) = I_3(0)[1 - x^2/b^2][1 + 1.1x^2/b^2]$ (кривая 3).

Значения этих функций при x = 0 найдены из условия, что интегралы от $I_1(x)$, $I_2(x)$ и $I_3(x)$ в пределах от -b до +b равны полному току I_z , текущему через слой. При этом $I_1(0) = 2J_z/\pi b$, $I_2(0) = 0.75J_z/b$, $I_3(0) = 0.615J_z/b$. Величина тока J_z во всех случаях предполагалась одинаковой и равной $J_z^0 = ch_0b^2/4$, что соответствует условию формирования нейтрального слоя (15) при распределении тока $I_1(x)$.

На рис. 3, *b* представлены продольные распределения нормальной компоненты магнитного поля $B_{y1}^J(x, 0)$, $B_{y2}^J(x, 0)$ и $B_{y3}^J(x, 0)$ для слоев с распределениями $I_1(x)$, $I_2(x)$ и $I_3(x)$. При построении $B_{y1}^J(x, 0)$ были использованы соотношения (17), $B_{y2}^J(x, 0)$ и $B_{y3}^J(x, 0)$ рассчитаны по формуле (9) и равны

$$B_{y2}^{J}(x,0) \approx -\frac{1.5J_z}{cb} \left[(1-x^2/b^2) \times \left(\ln \left| \frac{1-x/b}{1+x/b} \right| \right) - 2x/b \right], \quad (19)$$

$$B_{y3}^{J}(x,0) \approx -\frac{1.23J_{z}}{cb} \left\{ (1-x^{2}/b^{2}) \left[1+1.1(x^{2}/b^{2}) \right] \times \ln \left| \frac{1-x/b}{1+x/b} \right| -\frac{11}{3} \frac{x}{b} + 2.2 \frac{x^{3}}{b^{3}} \right\}.$$
(20)

На том же рисунке (прямая 4) нанесена *y*-компонента начального магнитного поля (2) $B_y^0 = -h_0 x B_y^0$ при $h_0 = 4J_z^0/cb^2$, соответствующим возникновению нейтрального токового слоя. Все приведенные на рис. 3, *b* величины отнесены к J_z^0/cb .

На рис. 3, *с* приведены продольные распеределения *y*-компоненты полного магнитного поля $B_y^{\text{tot}} = B_y^0 + B_y^J$. При расчете всех трех функций B_y^0 полагалось равным $B_y^0 = -h_0 x$. Как видно из рис. 3, *c*, полная компенсация начального магнитного поля в пределах слоя происходит только для слоя с $I_1(x)$. При распределениях тока $I_2(x)$ и $I_3(x)$ суммарное магнитное поле B_y^{tot} не только не равно нулю внутри слоя, но и меняет направление относительно B_z^0 в пределах слоя.

Общим для всех трех распределений является существенное уменьшение модуля полного магнитного поля в пределах токовых слоев относительно исходного: $|B_v^{\text{tot}}| < |B_v^0|$.

2. Расчет магнитного поля двугорбых токовых слоев

Под двугорбыми слоями будем понимать любые распределения токов I(x) вдоль оси x, обращающиеся в нуль на концах слоя при $x = \pm b$, имеющие два симметричных относительно оси z максимума J^{max} в точках $x = \pm x_{\text{max}}$ и минимум при x = 0.

2.1. Два цилиндрических тока

Наиболее простым для аналитических расчетов является случай двух цилиндрических токов, текущих в направлении *z*, оси которых находятся в точках $x = \pm x_{\text{max}}$, y = 0.

Известно, что модуль напряженности магнитного поля в точке, находящейся вне цилиндрически-симметричного тока J_z на расстоянии R от оси, превышающем радиус сечения тока r_0 , равен $B^J = \frac{2J_z}{cR}$.

Если же $R \le r_0$ (т.е. в точке, находящейся внутри тока), модуль магнитного поля определяется током

$$J_z(R) = 2\pi \int_0^R j(r) r dr,$$

текущим через сечение радиуса R, и зависит от радиального распределения плотности тока j(r). Для определенности будем считать, что

$$j(r) = j_0 \left[1 - \frac{r^2}{r_0^2} \right]$$

Тогда

$$J_z(R) = \pi j_0 R^2 \left[1 - \frac{R^2}{2r_0^2} \right]$$

полный ток при $R = r_0$ равен $J_z(r_0) = \frac{\pi j_0 r_0^2}{2}$, а плотность тока $j_0 = \frac{2J_z}{\pi r_0^2}$. Соответственно модуль магнитного поля в пределах тока равен

$$B^{J}(|R| < r_{0}) = \pm 4J_{z} \frac{R}{cr_{0}^{2}} \left[1 - \frac{R^{2}}{2r_{0}^{2}}\right].$$

Поскольку вектор магнитного поля тока кругового сечения перпендикулярен радиусу, то на оси $x B_y^J = B^J u R = x$. Соответственно распределение магнитного поля вдоль оси x (при y = 0) имеет вид

$$B_y^J(x,0) = \pm 4J_z \, rac{x}{c r_0^2} \left[1 - rac{x^2}{2r_0^2}
ight] \quad (ext{при} \quad |x| \le r_0)$$

И

$$B_{y}^{J}(x,0) = rac{2J_{z}}{cx}$$
 (при $|x| \ge r_{0}$). (21)

Распределение $B_y^J(x, 0)$ для тока кругового сечения приведено на рис. 4, *a* (кривая 2). На рисунке нанесено радиальное распределение плотности в пределах тока (кривая *I*).

Продольное распределение $B_y^J(x)$ для двух симметричных токов, оси которых расположены в точках $\pm x^{\max}$, приведено на рис. 4, *b* (кривая 1). При расчете предполагалось, что $x^{\max} = \pm 0.8b$, $r_0 = 0.2b$ и $J_{z1} = J_{z2} = 0.5J_z^0$. Значения B_y^J на рис. 4, *b* отнесены к J_z^0/cb . Там же штриховой прямой показана *y*-компонента начального поля B^0 (2). Как следует из рисунка, во всем интервале между двумя токами направления B_y^J и B_y^0 одинаковы. Таким образом, суммарное поле $B_y^{\text{tot}} = B_y^0 + B_y^J$ в этом интервале всегда больше исходного: $|B_y^{\text{tot}}| > |B_y^0|$.

Рис. 4. *a* — радиальное распределение плотности тока в пределах сечения цилиндрического тока (кривая *I*) и продольное поле тока B_y^J (кривая *2*); *b* — продольное распределение суммарного поля двух цилиндрических токов, расположенных в точках $x = \pm 0.8b$, y = 0 (кривая *I*), $2 - B_y^0$.

2.2. Расчет магнитного поля двугорбых токовых слоев при разных распределениях тока *I*(*x*)

На рис. 5, *а* представлены продольные распределения тока I(x) в трех различных двугорбых слоях.

1. Распределение $I_1(x)$ соответствует двум токам, подобным изображенным на рис. 4, *b*, соединенным между собой однородным слоем. Для определенности считаем, что в каждом из боковых токов сосредоточена 1/4 часть общего тока J_z , а в пределах однородного слоя $(1/2)J_z$.

2. Второе распределение $I_2(x)$ получено при наложении двух боковых токов на классический слой, изображенный на рис. 3, кривая 3. Радиус сечения каждого из боковых токов полагался равным 0.3*b*, а положение максимума $r^{\text{max}} = \pm 0.7b$. Так же как и ранее, предполагалось, что в каждом из боковых токов сосредоточено $0.25J_z$, а в протяженном слое $0.5J_z$.

3. Третье распределение описывается функцией $I_3(x) = I_3(0)[1 + 5(x/b)^2 - 6(x/b)^4]$. При этом полный

Рис. 5. *а* — продольные распределения тока в двугорбых токовых слоях (кривые 1, 3); *b* — распределения B_y^J , соответствующие функциям (*1*–3); *c* — соответствующие распределения B_y^{tot} ; *4* — начальное поле B_y^0 .

ток равен

$$I_{z} = \int_{-b}^{b} I_{3}(x) \, dx \approx 2.94b \, J_{3}(0)$$

и соответственно $I_3(0) = (0.34J_z/b).$

Продольные распределения *у*-компоненты магнитного поля, соответствующие распределениям тока $I_1(x)$, $I_2(x)$ и $I_3(x)$, приведены на рис. 5, *b*.

Распределения $B_y(x)$ (1, 2) для функций $I_1(x)$ и $I_2(x)$ получены суммированием ранее рассчитанных магнитных полей от элементов токов, составляющих $I_1(x)$ и $I_2(x)$, а распределение $B_y(x)$ для функции $I_3(x)$ рассчитано по формуле (9) и равно

$$B_{y}(x) \approx -\frac{2J_{z}}{3cb} \left\{ \left(1 + 5\left(\frac{x}{b}\right)^{2} - 6\left(\frac{x}{b}\right)^{4} \right) \ln \left| \frac{x - b}{x + b} \right| + 6\left(\frac{x}{b}\right) \left[1 - 2\left(\frac{x}{b}\right)^{2} \right] \right\}.$$
(22)

Во всех трех случаях предполагалось, что полный ток, протекающий в пределах слоя, равен $J_z = J_z^0$. На рис. 5, *b* нанесена также *y*-компонента начального поля $B_y^0(x) = -h_0 x$ (прямая 4). Как видно из рисунка, для всех двугорбых слоев в центральной части собственное магнитное поле B_y^1 имеет тот же знак, что и B_y^0 . Соответственно во внутренней части двугорбых слоев суммарное магнитное поле B_y^{tot} не уменьшается относительно исходного поля, как это происходит в случае классических токовых слоев, а, наоборот, усиливается (рис. 5, *c*).

Компенсация у-компоненты полей B_y^J и B_y^0 достигается только вблизи боковых краев слоев там, где происходит резкий спад продольного распределения токов $I_1(x)$, $I_2(x)$ и $I_3(x)$. Соответственно компонента B_y^{tot} двугорбых слоев близка к нулю вблизи точек $x \approx \pm b$ при распределении тока $I_1(x)$ и меняет свое направление относительно B_y^0 , в случае расеределений $I_2(x)$ и $I_3(x)$ (рис. 5, c).

3. Влияние величины тока J_z/J_z^0 на структуру магнитного поля

Все приведенные ранее расчеты магнитных полей как в случае одногорбых (рис. 3), так и двугорбых (рис. 5) токовых слоев выполнены в предположении, что полный ток J_z , текущий в пределах слоя, равен J_z^0 т.е. удовлетворяет соотношению (15), при выполнении которого при определенных условиях возможно формирование нейтрального токового слоя (см. раздел 1.2). В то же время в реальных экспериментальных условиях формирование токовых слоев в магнитных полях с нулевой линией вида (2) происходит в импульсном режиме: при протекании через плазму импульсного тока $J_{z}(t)$. Переменной величиной является также магнитное поле слоя $B^{J}(t)$, поскольку оно завист как от тока $J_{z}(t)$, так и от ширины слоя b, которая также изменяется со временем под действием сил Ампера F_x. Начальное же поле B_{v}^{0} изменяется со временем существенно медленнее и может считаться квазистационарным.

В результате величина тока J_z^0 , рассчитанная по формуле (15), может значительно отличаться от реального тока J_z , сосредоточенного в пределах слоя в данный момент. Более того, соотношение токов J_z^0 и J_z может существенно изменяться в процессе формирования токового слоя, что в свою очередь должно приводить к изменению структуры как магнитного поля самого слоя B^J , так и суммарного магнитного поля B^{tot} .

3.1. Зависимость структуры магнитного поля классического слоя от величины тока J_z

Влияние соотношения J_z/J_z^0 на продольное распределение у-компоненты магнитного поля классического слоя (рис. 6) рассмотрим на примере слоя с распределением тока $I(x) = I(0)\sqrt{1 - (x/b)^2}$. На рис. 6, *а* изображены продольные распределения тока, отнесенные к величине $I_0 = (2/\pi b)J_z^0$, равной значению I(0)в случае нейтрального токового слоя. Значения J_z/J_z^0 , соответствующие кривым (1–4), равны 0.5 (1), 0.75 (2), 1.0 (3) и 1.25 (4). Кривая 3, для которой $J_z = J_z^0$, соответствует нейтральному токовому слою.

На рис. 6, *b* представлены продольные распределения *y*-компоненты собственного поля слоя B_y^J , отнесенные к величине h_0b , для распределений тока 1-4, показанных на рис. 6, *a*. При каждом значении J_z градиент магнитного поля в пределах слоя постоянен. При увеличении J_z градиент поля растет пропорционально величине J_z/J_z^0 и при всех значениях тока имеет знак, обратный градиенту начального поля B_y^0 (прямая 5).

Распределения суммарного поля $B_v^{\text{tot}} = B_v^0 + B_v^J$ представлены на рис. 6, с. Как видно из рисунка, при $J_z/J_z^0 < 1$ (прямые 1, 2) знак градиента суммарного поля совпадает со знаком градиента исходного поля B_{ν}^{0} , что соответствует режиму растяжения слоя (направление сил Ампера, ответственных за движение тока и плазмы вдоль оси х, показано белыми стрелками). Увеличение величины J_z/J_z^0 ведет к уменьшению градиента суммарного поля (прямые 1, 2). При $J_z/J_z^0 = 1$ (функция 3) градиент суммарного поля равен нулю в пределах слоя, что соответствует возникновению нейтрального токового слоя. Дальнейший рост J_z/J_z^0 приводит к изменению направления магнитного поля (функция 4) относительно исходного поля B_v^0 (прямая 5). Это в свою очередь ведет к изменению направления сил Ампера (черные стрелки) и переходу от режима растяжения слоя к режиму сжатия.

Следует заметить, что одновременный на всем протяжении слоя переход от режима растяжения к режиму сжатия может происходить только при продольном распределении тока вида (14). При других одногорбых продольных распределениях тока (рис. 3, кривые 2, 3) одновременной полной компенсации магнитных полей $B_y^J(x)$ и $B_y^0(x)$ вдоль всей ширины слоя не происходит. В этих случаях переход от режима растяжения к режиму сжатия происходит в некотором интервале изменения величины J_z/J_z^0 .

Рис. 6. Зависимости структуры магнитного поля классических слоев от величины полного тока J_z , текущего в пределах слоя: *a* — продольные распределения тока в токовых слоях; *b* — продольные распределения нормальной компоненты магнитного поля $B_y^J(x)$; *c* — продольные распределения нормальной компоненты полного магнитного поля $B_y^{\text{tot}}(x)$. Значения J_z/J_z^0 , соответствующие кривым 1-4, равны 0.5 (1), 0.75 (2), 1.0 (3), 1.25 (4). Прямые линии 5 — начальное магнитное поле B_y^0 . Белыми стрелками показано направление сил Ампера, приводящих к растяжению слоев, черными стрелками — направление сил, ведущих к сжатию слоев.

3.2. Влияние величины тока *J*_z на магнитное поле двугорбого токового слоя

Зависимость структуры магнитного поля двугорбого токового слоя от соотношения J_z/J_z^0 иллюстрирует рис. 7. Номера всех функций на этом рисунке соответ-

ствуют тем же значениям J_z/J_z^0 , что и на рис. 6. Расчеты выполнены для продольного распределения тока вида $I_3(x) = I_3(0)[1 + 5(x/b)^2 - 6(x/b)^4]$ (рис. 5, кривая 3).

На рис. 7, *а* приведены продольные распределения тока I(x), отнесенные, так же как и на рис. 6, *a*, к величине $I_0 = \frac{2}{\pi b} J_z^0$. На рис. 7, *b* представлены результаты расчета *y*-компоненты собственного магнитного поля слоя, выполненные с помощью соотношения (22). Как видно из рисунка, в центральной части слоя при всех значениях J_z/J_z^0 магнитное поле B_y^J имеет тот же знак, что и начальное поле B_y^0 . Однако по мере приближения к краям слоя магнитное поле B_y^J меняет направление на

Рис. 7. Зависимости структуры магнитного поля двугорбых токовых слоев от величины полного тока J_z : a — продольные распределения тока I(x) в токовых слоях; b и c — продольные распределения $B_y^J(x)$ и $B_y^{\text{tot}}(x)$. Значения J_z/J_z^0 (I-4) те же, что на рис. 6. Прямая линия 5 — начальное магнитное поле B_y^0 .

противоположное. Причем при $J_z/J_z^0 \ge 1$ абсолютная величина B_y^J в этой области превышает модуль исходного поля B_y^0 .

Соответственно модуль полного магнитного поля $B_y^{\text{tot}} = B_y^0 + B_y^J$ (рис. 7, *c*) в центральной части слоя при всех значениях J_z/J_z^0 больше модуля исходного поля: $|B_y^{\text{tot}}| > |B^0|$. По мере приближения к краям модуль поля B_y^{tot} убывает, но его направление при значениях J_z/J_z^0 , равных 0.5 и 0.75 (кривые 1 и 2), совпадает с направлением исходного поля B_y^0 . При этом силы Ампера (белые стрелки) направлены от центра к периферии на всем протяжении слоя, что соответствует режиму растяжения. При $J_z/J_z^0 \ge 1$ (кривые 3, 4) вблизи краев слоя появляются области, где поле B_y^{tot} меняет свое направление относительно B_y^0 , что приводит к появлению в этих областях сил, направленных к центру слоя (черные стрелки).

4. Обсуждение результатов

В настоящей работе проведены расчеты магнитных полей токовых слоев двух типов:

 классических слоев с одногорбым распределением тока вдоль оси слоя;

 двугорбых слоев, продольное распределение тока в которых имеет минимум в центре слоя и два симметричных боковых максимума.

В первом случае результаты расчетов в значительной степени тривиальны и находятся в хорошем согласии с данными многочисленных теоретических [4,5] и экспериментальных [6,7,19–23] работ. Тем не менее приведение результатов расчета магнитных полей классических слоев в настоящей работе необходимо для выявления особенностей структуры магнитного поля и динамики двугорбых токовых слоев.

Двугорбые плазменные слои впервые наблюдались в работах [14–16] при формировании токовых слоев в слабоионизованной плазме (степень ионизации ~ 10⁻⁴). Детальное сравнение плазменных слоев, формирующих-ся в высокоионизованной и слабо ионизованной плазме, проведено в [17,18].

В работах [14–18] сведения о структуре и динамике плазменных слоев получены методом голографической интерферометрии. Так, что двугорбыми в этом случае являются продольные распределения электронной плотности $N_e(x)$, данные же о реальном распределении тока в пределах этих плазменных слоев в настоящее время отсутствуют. Предположение о двугорбом распределении тока I(x) в этих слоях основано в основном на особенностях их эволюции во времени и пространстве, выявленных на основе голографической интерферометрии.

Здесь ограничимся перечислением основных отличий структуры магнитных полей двугорбых слоев от структуры магнитного поля классических слоев, выявленных на основании сделанных в настоящей работе расчетов. 1. Известно, что *y*-компонента B_y^J собственного магнитного поля классических слоев на всей их ширине направлена навстречу исходному полю B_y^0 (рис. 3, *b*, 6, *b*). В двугорбых же токовых слоях *y*-компонента магнитного поля B_y^J в центральной части слоя совпадает по направлению с исходным поперечным полем B_y^0 (рис. 5, *b*, 7, *b*). В то же время в области, примыкающей к краям двугорбого слоя, B_y^J меняет свое направление на противоположное.

2. Полное магнитное поле $B_y^{\text{tot}} = B_y^0 + B_y^J$ классических токовых слоев всегда меньше по модулю исходного поля B_{v}^{0} : $|B_{v}^{\text{tot}}| < |B_{v}^{0}|$ (рис. 3, *c*, 6, *c*), а при определенных условиях происходит полная компенсация этих полей $(B_v^{\text{tot}} = 0)$, что соответствует возникновению нейтрального токового слоя (см. разд. 2.2). В случае же двугорбого слоя в центральной части выполняется обратное неравенство: $|B_v^{\text{tot}}| > |B_v^0|$, т.е. полное магнитное поле в этой части слоя больше исходного (рис. 5, c, 7, c). В то же время в области, примыкающей к краям слоя, где B_y^J направлено навстречу B_y^0 , абсолютная величина полного поля B_y^{tot} меньше B_y^0 , и при определенной величине тока J_z , текущего в пределах слоя, B_y^{tot} может обратиться в нуль и даже изменить направление относительно B_{v}^{0} (рис. 7, *c*, кривые 3, 4). Поскольку *x*-компонента магнитного поля B_x^{tot} на оси *x* всегда равна нулю, в точках, где функция $B_v^{\text{tot}}(x)$ обращается в нуль, возможно появление новых нулевых линий.

3. Направление полного магнитного поля B_y^{tot} классического слоя зависит от величины тока J_z , текущего в пределах слоя при $J_z < J_z^0$, определяемого условием (15), направление B_y^{tot} совпадает с направлением B_y^0 , что соответствует режиму расширения слоя (рис. 6, *c*, прямые 1, 2), а при $J_z > J_z^0$ направление B_y^{tot} противоположно B_y^0 , что соответствует переходу в режим сжатия.

В случае же двугорбого слоя, в центральной его части B_y^{tot} совпадает по направлению с B_y^0 при всех значениях J_z , т.е. перехода к режиму сжатия не происходит (рис. 7, *c*). В то же время при больших токах $J_z/J_z^0 \ge 1$ вблизи краев слоя появляются области, где B_y^{tot} меняет свое направление (рис. 7, *c*). При этом возникают силы, направленные навстречу растягивющим силам, действующим в центральной части слоя, что должно приводить к деформации слоя и перераспределению плазмы и тока в его пределах слоя.

Сравнению экспериментальных данных о структуре и эволюции двугорбых плазменных слоев с более детальными расчетными распределениями сил Ампера, ответственных за динамику токовых слоев, формируемых в магнитных полях с нулевой линией вида (2), посвящена вторая часть настоящей работы [24].

Работа выполнена при частичной поддержке Российским фондом фундаментальных исследований, проект № 09-02-00971а и Программой фундаментальных исследований Отделения физических наук РАН ОФН-15 "Плазменные процессы в космосе и в лаборатории".

Список литературы

- [1] Сыроватский С.И. // Акустич. журн. 1966. Т. 43. С. 340–355.
- [2] Сыроватский С.И. // ЖЭТФ. 1966. Т. 50. С. 1133–1147.
- [3] Имшенник В.С., Сыроватский С.И. // ЖЭТФ. 1967. Т. 52. С. 990–1002.
- [4] Сыроватский С.И. // ЖЭТФ. 1971. Т. 60. С. 1727–1741.
- [5] Syrovarskii S.I. // Annu. Rev. Astron. Astrophys. 1981. Vol. 19. P. 163–229.
- [6] Сыроватский С.И., Франк А.Г., Ходжаев А.З. // Письма в ЖЭТФ. 1972. Т. 15. С. 138–142.
- [7] Франк А.Г. // Тр. ФИАН. 1974. Т. 74. С. 108–166.
- [8] Дрейден Г.В., Марков В.С., Зайдель А.Н. и др. // Письма в ЖТФ. 1975. Т. 1. С. 141–146.
- [9] Дрейден Г.В., Кирий Н.П., Марков В.С. и др. // Физика плазмы. 1977. Т. 3. С. 45–54.
- [10] Дрейден Г.В., Марков В.С., Островская Г.В. и др. // Физика плазмы. 1978. Т. 4. С. 14–17.
- [11] Богданов С.Ю., Дрейден Г.В., Кирий Н.П. и др. // Физика плазмы. 1992. Т. 18. С. 1269–1282.
- [12] Богданов С.Ю., Дрейден Г.В., Кирий Н.П. и др. // Физика плазмы. 1992. Т. 18. С. 1283–1295.
- [13] Богданов С.Ю., Кирий Н.П., Франк А.Г. // Тр. ИОФАН. 1996. Т. 51. С. 5–75.
- [14] Богданов С.Ю., Дрейден Г.В., Марков В.С. и др. // Физика плазмы. 2006. Т. 32. С. 1121–1135.
- [15] Frank A.G., Bogdanov S.Yu., Dreiden G.V. et al. // Phys. Lett. A. 2006. Vol. 348. P. 318–325.
- [16] Богданов С.Ю., Дрейден Г.В., Марков В.С. и др. // Физика плазмы. 2007. Т. 33. С. 1014–1027.
- [17] Островская Г.В., Франк А.Г., Богданов С.Ю. // ЖТФ. 2010. Т. 80. Вып. 7. С. 24–33.
- [18] Островская Г.В., Франк А.Г. // ЖТФ. 2012. Т. 82. Вып. 4. С. 75-85.
- [19] Богданов С.Ю., Бугров С.Г., Грицына В.П. и др. // Физика плазмы. 2007. Т. 33. С. 483–492.
- [20] Frank A.G., Bugrov S.G., Markov V.S. // Phys. Plasmas. 2008. Vol. 15. P. 092 102 (1–10).
- [21] Frank A., Bugrov S., Markov V. // Phys. lett. A. 2009. Vol. 373.
 P. 1460–1464.
- [22] Франк А.Г. // УФН. 2010. Т. 180 (9). С. 982–988.
- [23] Франк А.Г., Сатунин С.Н. // Физика плазмы. 2011. Т. 33. С. 889–908.
- [24] Островская Г.В. // ЖТФ. 2013. Т. 83. Вып. 4. С. 69-80.