03,04

Высокотемпературная теплоемкость La₂CuO₄

© В.М. Денисов, Л.Т. Денисова, Л.Г. Чумилина, С.Д. Кирик

Институт цветных металлов и материаловедения Сибирского федерального университета, Красноярск, Россия

E-mail: antluba@mail.ru

(Поступила в Редакцию 9 января 2013 г.)

Получены экспериментальные данные по теплоемкости La₂CuO₄ в интервале температур 400-950 К. На зависимости теплоемкости от температуры установлено наличие экстремума при температуре 526 К.

1. Введение

В течение длительного времени не ослабевает внимание как теоретиков, так и экспериментаторов к металлоксидным соединениям, к которым относится антиферромагнитный La₂CuO₄ [1-6]. При небольшом изменении химического состава (при замещении атомов La атомами Ba и Sr, а также при введении дополнительного количества кислорода) это соединение проявляет свойства высокотемпературной сверхпроводимости [7,8], при изучении природы которой большое внимание уделено, в основном, магнитным свойствам. Кристалл La₂CuO₄ является четырехподрешеточным слабо коллинеарным антиферромагнетиком с температурой Нееля $T_{\rm N} \approx 325 \, {\rm K}$ [9]. Структура этого соединения рассмотрена в работах [1,8,10,11]. Отмечено, что имеется фазовый переход из высокотемпературной тетрагональной фазы в низкотемпературную фазу [10,11]. Согласно [10], этот переход происходит при температуре 521 ± 3 К. Диаграмма состояния системы La₂O₃-CuO характеризуется наличием трех соединений: La₂CuO₄, La₈Cu₇O₁₉, La₂Cu₂O₅ [12]. Наиболее исследованным является первое из них. Тем не менее и для него сведений о термодинамических свойствах очень мало. Имеются данные о низкотемпературной теплоемкости La₂CuO₄ (2–45 K) [13]; (5–100 K) [7]; накислороженного $La_2CuO_{4.08}$ (5–100 K) [7]; легированного стронцием и барием (La_{2-x} M_x CuO₄; M = Sr, Ba: x = 0.05; 0.1; 0.13 и 0.15) в интервале температур 2-45 К [13]; La_{1.85}Sr_{0.15}CuO₄ (1.5-50 K) в магнитных полях 0, 2, 4, 6 и 8 Т [14]. Данные о высокотемпературной теплоемкости La₂CuO₄ для интервала температур 110-600 К приведены в работе [15]. Для более высоких температур сведения о теплоемкости этого соединения, по-видимому, отсутствуют. При этом нужно иметь в виду то, что теплоемкость является объемной термодинамической характеристикой вещества и позволяет в ряде случаев определить особенности фазовых переходов [16,17].

Целью настоящей работы является исследование высокотемпературной теплоемкости La₂CuO₄.

2. Эксперимент

Образцы La₂CuO₄ были изготовлены методом твердофазной реакции спекания оксидов La₂O₃ и CuO. После перемешивания стехиометрической смеси и последующего прессования таблетки отжигали на воздухе при 1173 К в течении десяти часов с двумя промежуточными перетираниями и прессованием. Такую же операцию повторяли при температуре 1273 К. Выбор температур синтеза обусловлен особенностями поведения CuO при высоких температурах [18]. Рентгенофазовый анализ не обнаружил наличия других фаз кроме La₂CuO₄. РФА проводили на приборе X'Pert Pro фирмы Panalytical с полупроводниковым детектором PIXcel и графитовым монохроматором и излучении СиК_а. Из рентгенограмм определялся параметр решетки методом подгонки по полному профилю, без ссылки на структуру. Полученные данные приведены на рис. 1. При комнатной температуре образец имел орторомбическую структуру с параметрами решетки a = 5.3507 Å, b = 5.3988 Å, c = 13.1380 Å. Эти результаты близки к данным [10]: $a = 5.354 \pm 0.002$ Å, $b = 5.400 \pm 0.002$ Å, $c = 13.130 \pm 0.006$ Å и несколько отличаются от таковых, приведенных в работах [1,8].

Измерение теплоемкости проводили в платиновых тиглях на приборе STA 449 С Jupiter (NETZSCH). Методика экспериментов подобна описанной в [19,20]. Принимая во внимание, что La₂CuO₄ может содержать

Рис. 1. Дифрактограмма La₂CuO₄ при комнатной температуре.

Термодинамические свойства La₂CuO₄

избыточный кислород [4,7], все измерения C_p проводили в атмосфере аргона. Проведенный дифференциальнотермический анализ показал, что при температурах выше 1073 К образцы в инертной атмосфере теряют кислород. Поэтому измерения C_p ограничены температурой 950 К.

3. Результаты и их обсуждение

На рис. 2 показано влияние температуры на молярную теплоемкость C_p La₂CuO₄. Видно, что на зависимости $C_p = f(T)$ виден четкий экстремум при температуре 526 К. Непрерывное изменение теплоемкости La₂CuO₄ в области экстремума может свидетельствовать о переходе второго рода [21-23]. Кроме того, достаточно выраженная λ-образная форма пика теплоемкости говорит о влиянии термодинамических флуктуаций в теплоемкость La2CuO4 в области фазового перехода. Величина скачка С_р в области этого перехода составляет $\Delta C_p(T_{\text{max}}) \sim 7 \text{ J/(mol} \cdot \text{K})$, а ширина перехода $\Delta T \approx 140$ К. Полученное значение ΔT для экстремума кривой $C_p = f(T)$ достаточно велико, что, согласно [23], свидетельствует о переходе второго рода, т.к. для переходов первого рода пик теплоемкости очень узкий с шириной порядка 10 К.

Для La₂CuO₄ характерен фазовый переход, связанный с изменением пространственной группы кристалла с D_{4h}^{17} (тетрагональная фаза) на D_{2h}^{18} (орторомбическая фаза) [8]. Значения температуры фазового перехода, полученные разными авторами, довольно близки между собой: 521 ± 3 K [10]; 526 K (наши данные); 523 K (монокристалл), 535 K (поликристалл) [15]; 530 K [24]. Переход из тетрагональной фазы в орторомбическую фазу в [8] связывают с замерзанием мягкой колебательной моды в X-точке зоны Бриллюэна. Эта мода связана с жестким вращением кислородного октаэдра, окружающего ион Cu²⁺. Здесь нужно иметь в виду то,

Рис. 2. Температурная зависимость теплоемкости La₂CuO₄: 1 — экспериментальные данные, 2 — [15], 3 — [7].

<i>Т</i> , К	$C_p,$ $\mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1}$	$C_V, \ \mathbf{J} \cdot \mathrm{mol}^{-1} \cdot \mathbf{K}^{-1}$	$H_T^0 - H_{574}^0,$ kJ · mol ⁻¹	$S_T^0 - S_{574}^0,$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$
574	173.4	165.9	-	_
600	174.1	166.2	4.518	7.697
650	175.4	166.8	13.25	21.68
700	176.7	167.4	22.05	34.73
750	177.9	168.0	30.92	46.96
800	179.2	168.7	39.85	58.48
850	180.5	169.3	48.84	69.38
900	181.8	169.9	57.90	79.74
950	183.0	170.5	67.02	89.60

что ближайшее окружение ионов Cu^{2+} в кристаллах La₂CuO₄ и R_2 CuO₄ (R = La, Pr, Nd, Sm, Eu, Gd) с P3И (редкоземельные ионы) разное [11]: в La₂CuO₄ — это октаэдры из ионов O²⁻ (координационное число Z = 6), а в R_2 CuO₄ с P3И — квадраты из ионов кислорода (Z = 4). Структурные свойства таких кристаллов определяются взаимодействиями внутри слоев CuO₂ и слоев, содержащих P3И, а также межслоевыми взаимодействиями. По данным [11], максимальное смещение ионов меди при тепловых колебаниях наблюдается вдоль оси c, что соответствует ближайшему окружению иона в виде вытянутого вдоль оси c октаэдра.

Авторы работы [15], также изучавшие температурную зависимость теплоемкости La₂CuO₄, на монокристаллических образцах на кривой $C_p = f(T)$ получили очень четкий экстремум при температуре 523 K, который на поликристаллических образцах несколько размывается и проявляется при температуре 535 K. Для сравнения эти данные (поскольку в нашем случае использовали керамические образцы, то результаты [15] взяты для поликристаллических образцов), а также результаты [7] приведены на рис. 2. Видно, что результаты по теплоемкости La₂CuO₄ разных авторов в целом согласуются.

Температурная зависимость $C_p = f(T)$ в интервале 574—950 К может быть описана следующим уравнением (в единицах J · mol⁻¹ · K⁻¹)

$$C_p = 158.73 + 25.60 \cdot 10^{-3}T - 70.00 \cdot 10^5 T^{-2}.$$
 (1)

Это позволяет определить $H_T^0 - H_{574}^0$ и $S_T^0 - S_{574}^0$ по известным термодинамическим уравнениям. Результаты расчета приведены в таблице.

В работе [15] для расчета C_V на основании данных о C_p использовали соотношение

$$C_p - C_V = T \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_P = B\nu\beta^2 T.$$
 (2)

Входящие в соотношение (2) величины равны: $B = 1.85 \cdot 10^7 \text{ N/cm}^2$; $\nu = 1/(7.12 \text{ g/cm}^3)$; $\beta = 3.6 \cdot 10^{-5} \text{ K}^{-1}$. Рассчитанные значения C_V для La₂CuO₄ также приведены в таблице. Из этих результатов следует, что при всех исследованных температурах значения C_V не

Рис. 3. Связь состава и удельных значений теплоемкости системы CuO-Ga₂O₃: *1* — [26], *2* — наши данные, *3* — оценочные значения.

превышают классический предел Дюлонга-Пти 3Rs, где R — универсальная газовая постоянная, s — число атомов в формульной единице La₂CuO₄ (s = 7).

Ранее нами была показана связь между составом оксидных соединений и их удельной теплоемкостью [25]. Полагая, что такая корреляция наблюдается и для системы La₂O₃-CuO (рис. 3), можно, несмотря на малое количество экспериментальных точек, оценить значения C_p^0 для других оксидных соединений этой системы. Из рис. 3 следует, что в данном случае оценочные значения C_p^0 имеют меньшую погрешность, чем полученные аддитивным методом Неймана-Копа [27].

Оценочные значения C_p^0 для La₈Cu₇O₁₉ и La₂Cu₂O₅ равны 0.40 и 0.41 ($J \cdot g^{-1} \cdot K^{-1}$) соответственно.

4. Заключение

Исследована температурная зависимость теплоемкости (400–950 K) соединения La₂CuO₄. Обнаруженный на кривой $C_p = f(T)$ экстремум при 526 K связан с переходом из тетрагональной в орторомбическую фазу.

Список литературы

- [1] A.H. Davies, J.D. Tilley. Nature **326**, *4*, 859 (1987).
- [2] O.M. Sreedharan, C. Mallika, K. Swaminathan. J. Mater. Sci. 23, 2735 (1988).
- [3] R.J. Cava, T. Siegrist, B. Hessen, J.J. Krajewski, W.F. Peck jr., B. Batlogg, H. Takagi, J.V. Waszczak, L.F. Schneemeyer. Physica C 177, 115 (1991).
- [4] A.V. Bazhenov, A.V. Gorbunov, V.B. Timofeev. JETP 77, 3, 500 (1993).
- [5] М.А. Шамсутдинов, В.Н. Назаров. ФТТ 44, 2, 325 (2002).
- [6] В.А. Гавричков, С.Г. Овчинников. ФТТ 50, 6, 1037 (2008).

- [7] Г.Ф. Сырых, В.П. Глазков, А.В. Суетин, М.Н. Хлопкин, И.Л. Сашин, Е.А. Горемыкин. ФТТ 37, 12, 3661 (1995).
- [8] А.Ю. Захаров, А.Е. Никифоров, С.Ю. Шашкин. ФТТ 41, 6, 1096 (1999).
- [9] М.А. Шамсутдинов, В.Н. Назаров. ФТТ 40, 8, 1510 (1998).
- [10] И.С. Шаплыгин, Б.Г. Кахан, В.Б. Лазарев. ЖНХ 24, 6, 1478 (1979).
- [11] Е.И. Головенчиц, В.А. Санина, А.А. Левин, Ю.Ф. Шепелев, Ю.И. Смолин. ФТТ 44, 11, 2035 (2002).
- [12] C. Sekar, T. Watanabe, A. Matsuda. J. Cryst. Growth 212, 142 (2000).
- [13] К.А. Квавадзе, М.М. Надареишвили, Г.Г. Басилия, Д.Д. Игитханишвили, Л.А. Тархнишвили, Ш.В. Двали. ФТТ 39, 6, 1000 (1997).
- [14] Г.Х. Панова, А.А. Шиков, М.Н. Хлопкин, Н.А. Черноплеков. ФТТ **44**, *1*, 29 (2002).
- [15] K. Sun, J.H. Cho, F.C. Chou, W.C. Lee, L.L. Miller, D.C. Johnston. Phys. Rev. B 43, 1, 239 (1991).
- [16] А.К. Муртазаев, Ш.Б. Абдулвагидов, А.М. Алиев, О.К. Мусаев. ФТТ 43, 6, 1067 (2001).
- [17] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, Г.С. Патрин, Н.В. Волков, Л.Г. Чумилина. ФТТ 54, 12, 2229 (2012).
- [18] A.A. Bush, V.Ya. Shkuratov, A.B. Kuz'menko, E.A. Tishchenko. Crystall. Rep. 47, 2, 335 (2002).
- [19] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, В.С. Биронт. ФТТ **52**, 7, 1274 (2010).
- [20] В.М. Денисов, Л.А. Иртюго, Л.Т. Денисова, В.В. Иванов. ТВТ 48, 5, 790 (2010).
- [21] С.В. Вонсовский. Магнетизм. Наука, М. (1971). 1032 с.
- [22] А.З. Поташинский, В.Л. Покровский. Флуктуационная теория фазовых переходов. Наука, М. (1982). 382 с.
- [23] А.И. Гусев. Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле. Физматлит, М. (2007). 856 с.
- [24] J.M. Longo, P.M. Raccah. J. Solid State Chem. 6, 4, 526 (1973).
- [25] В.М. Денисов, Л.Т. Денисова, Л.А. Иртюго, Н.В. Волков, Г.С. Патрин, Л.Г. Чумилина. ФТТ 54, 10, 2012 (2012).
- [26] J. Leitner, P. Chuchvalec, D. Sedmidubský, A. Strejc, P. Abrman. Termochum. Acta 395, 27 (2003).
- [27] Г.К. Моисеев, Н.А. Ватолин, Л.А. Маршук, Н.И. Ильиных. Температурные зависмости приведенной энергии Гиббса некоторых неорганических веществ. УрО РАН, Екатеринбург (1977). 228 с.