06;07

Резонансная и полосовая фильтрация на основе двухфазных кристаллоподобных структур

© Е.А. Нелин, А.И. Назарько

Национальный технический университет Украины "Киевский политехнический институт", 03056 Киев, Украина e-mail: ye.nelin@gmail.com

(Поступило в Редакцию 11 октября 2011 г.)

Предложены двухфазные кристаллоподобные структуры для резонансной и полосовой фильтрации сигналов. Показано, что избирательность двухфазного резонатора выше, чем традиционного полуволнового. Рассмотрена реализация полосовой фильтрации связанными резонаторами. Приведены экспериментальные и расчетные характеристики полосового фильтра на основе двухфазного электромагнитного кристалла.

Кристаллоподобные структуры (КС) составляют основу новых разнообразных устройств обработки сигналов. В КС пропускание волн обусловлено резонансным прохождением в разрешенных зонах и туннелированием в запрещенных. За счет этих эффектов структуры обладают предельно возможным диапазоном управления волнами: от полного пропускания до почти полного непропускания. В КС достигается высокая локализация поля. Повышение локализации поля соответствует повышению избирательности и представляет собой фундаментальную задачу для устройств обработки сигналов.

Известные КС конструируют аналогично природным кристаллам. Согласно модели Кронига-Пенни, кристалл характеризуется однофазной (для отраженных волн) потенциальной и импедансной зависимостью. В искусственных структурах возможны более сложные зависимости, что открывает новые возможности в формировании зонной диаграммы. Так, при двухфазной импедансной зависимости [1] частоты разрешенных и запрещенных зон уменьшаются примерно вдвое по сравнению с однофазной. Соответственно вдвое уменьшаются размеры структур и устройств на их основе. Как и однофазная зависимость, двухфазная реализуема в различных искусственных структурах. Однофазную (single-phase) и двухфазную (two-phase) КС, их элементарные ячейки и параметры обозначим буквами s и t.

В настоящей работе рассмотрена резонансная и полосовая фильтрация сигналов на основе KCt.

Резонансная фильтрация

Резонансная спектральная фильтрация имеет исключительное значение для различных приложений. Технические решения такой фильтрации основаны на использовании резонатора Фабри-Перо. Рассмотрим особенности резонансной фильтрации на основе КСtрезонатора.

На рис. 1, а и *b* приведены импедансные зависимости для KCs и KCt. Импедансные барьер и яма моделируют неоднородности KC. Сдвиг фаз между волнами 1 и 2 равен $\varphi_d + \varphi_r$, где φ_d — удвоенный набег фаз на расстоянии d; φ_r — разность фаз при отражении. Поскольку в кристаллах и в KCs неоднородности идентичны с коэффициентами отражения r одной фазы, то $\varphi_{rs} = 0$. Для смежных неоднородностей KCt $r_2 = -r_1$ и $\varphi_{rt} = \pi$. Таким образом, условия брэгговских отражений в пер-

Рис. 1. Импедансные зависимости КС и КС-резонаторов: *a* — КСs, *1* и *2* — отраженные волны, *d* — период; *b* — КСt; *c* — s-резонатор, 1 и *Z* — нормированные импедансы внешней среды и отражателя; *d* — t-резонатор.

вой запрещенной зоне KCs и KCt имеют вид $\varphi_{ds} = 2\pi$ и $\varphi_{dt} = \pi$. Из этих условий следует, что брегговская частота KCt в 2 раза меньше.

Элементарная ячейка КСs представляет собой резонатор Фабри-Перо (s-резонатор) с резонаторной полостью длиной $\lambda_0/2$, где λ_0 — длина волны на частоте f_0 основного резонанса. Элементарная ячейка КСt — t-резонатор с полостью длиной $\lambda_0/4$. Добротность резонатора возрастает с увеличением длины полости и коэффициента отражения отражателей. В *t*-резонаторе полость меньше, однако за счет этого можно разместить дополнительные отражательные слои, увеличивающие коэффициент отражения. Покажем, что второй фактор влияет на добротность в большей степени.

На рис. 1, *с* и *d* приведены импедансные зависимости для s- и t-резонаторов с заданными резонансной частотой, диапазоном импедансов и электрической длиной. Отражатель s-резонатора — слой толщиной $\lambda_0/4$, a t-резонатора — слои толщиной $\lambda_0/4$ и $\lambda_0/8$ с импедансами *Z* и Z^{-1} . Характеристика такого t-резонатора несколько смещена вверх по частоте, поскольку $\lambda_0/8$ слои нарушают противофазность коэффициентов отражения отражателей. Для коррекции смещения необходимо увеличить на Δl длину полости *l* и уменьшить на $\Delta l/2$ толщину $\lambda_0/8$ -слоев. При увеличении *Z* от 3 до 10 величина $\delta l = \Delta l/l$ уменьшается от 3.88 до 0.125%.

Исходя из [2], для добротности резонатора Фабри-Перо имеем

$$Q = \alpha \beta, \tag{1}$$

где $\alpha = \pi$, $\beta = \arcsin^{-1}[(1 - r^2)/2|r|]/2$; значение r действительное и не зависит от частоты. Множитель α равен набегу фаз в резонаторе на частоте f_0 : $\alpha = \varphi Q$, где φ — сдвиг фаз в полосе резонанса.

С учетом частотной зависимости фазы коэффициента отражения для рассматриваемых резонаторов $\alpha = \alpha_l + \alpha_r$, где $\alpha_{l,r}$ — составляющие за счет длины полости и коэффициента отражения. Поскольку $Q \gg 1$, то $Z^2 \gg 1$, $|r| \approx 1$ и $\beta \approx |r|/(1 - r^2)$.

Из выражения $r = (Z_i - Z_l)/(Z_i + Z_l)$, где Z_i — входной импеданс отражателя, Z_l — импеданс полости, с учетом $Q \gg 1$ получим $|r_t| \approx 1 - 4/Z^4$, $\beta_t \approx Z^4/8$, $\alpha_{rt} \approx \pi/Z$ и $r_s \approx 1 - 2/Z^3$, $\beta_s \approx Z^3/4$, $\alpha_{rs} \approx \pi/Z^2$. Согласно (1), имеем

$$Q_t \approx \frac{\pi Z^3 (Z+2)}{16}, \qquad Q_s \approx \frac{\pi Z^3}{4},$$
$$q = \frac{Q_t}{Q_s} = \frac{Z+2}{4}.$$
(2)

На рис. 2 приведены рассчитанные характеристики t- и s-резонаторов равной длины. Согласно (2), значения Q_t , Q_s и q равны соответственно 172, 98 и 1.75, что хорошо согласуется со значениями их характеристик 180, 102 и 1.77.

С увеличением Z от 3 до 10 значение q, согласно (2), возрастает от 1.25 до 3. При произвольном

Рис. 2. Частотные зависимости коэффициента прохождения t- (I) и s-резонатора (2). $F = f/f_0$, Z = 5, $\delta l = 0.95\%$.

числе $n \lambda_0/4$ -слоев отражателя добротности равны $Q_t \approx \pi (Z+2)Z^{2n+1}/16$ и $Q_s \approx \pi Z^{2n+1}/4$. Отношение q от n не зависит. Таким образом, t-резонатор обеспечивает более высокую избирательность по сравнению с s-резонатором.

Полосовая фильтрация

Связанные резонаторы позволяют сформировать полосовую характеристику аналогично формированию разрешенной зоны кристалла. На вставке рис. 3 показана полосовая КСt на основе связанных t-резонаторов. Внешние и внутренние отражатели КСt образованы одиночными и двойными четвертьволновыми слоями с импедансами Z и Z^{-1} . Для коэффициентов отражения этих отражателей соответственно имеем $|r_0| \approx 1 - 2/Z^2$ и $|r_i| \approx 1 - 2/Z^4$. Поскольку $|r_i|$ существенно ближе к

Рис. 3. Частотные зависимости коэффициента прохождения полосовой КСt. I - Z = 4, число резонаторов N = 3; 2 - Z = 2, N = 4. Здесь f_0 — средняя частота.

единице, резонаторы связаны слабо, что обеспечивает низкий уровень пульсаций в полосе пропускания.

Зависимости 1 и 2 на рис. 3 иллюстрируют формирование полосовой характеристики. Параметры характеристики определяют значения Z и N. Введем обозначения: Δf — ширина полосы пропускания по уровню –3 dB, δ — неравномерность в полосе пропускания. Зависимости 1 и 2 имеют такие значения Δf и δ : 8 и 27%, 0.14 и 0.55 dB.

Полосовую КСt, реализованную чередованием неоднородностей с импедансами $Z_1 < 1$ и $Z_2 = Z_1^{-1} > 1$, обозначим как КСt1 (первого типа). Вследствие физических или технических ограничений одно из неравенств может не выполняться. На вставке рис. 4 показаны импедансные зависимости для таких случаев. При этом $Z_2 = Z_1^2$. Обозначим такие КСt как КСt2. Импедансные слои КСt2, как и КСt1, — четвертьволновые. Характеристики 1 и 2 КСt2 на рис. 4 имеют следующие значения Δf и δ : 29.3 и 63.5%, 0.50 и 0.57 dB.

На рис. 5 приведена топология микрополоскового фильтра на основе КСt1. Для уменьшения габаритов структура имеет форму меандра. Низко- и высокоимпедансные неоднородности сформированы широкими и узкими отрезками сигнального проводника. Скруглени-

Рис. 4. Частотные зависимости коэффициента прохождения полосовой KCt2. $I - Z_1 = 5.6$ (или 0.18), N = 4; $2 - Z_1 = 2$ (или 0.5), N = 6.

Рис. 5. Микрополосковый полосовой КСt-фильтр.

Рис. 6. Экспериментальная (1) и расчетная (2) амплитудночастотные характеристики микрополоскового полосового КСtфильтра.

ем краев широких отрезков уменьшена неравномерность характеристики в полосе пропускания.

На рис. 6 представлены характеристики такого фильтра. Конструктивные параметры фильтра: длина 30 mm, ширина 20 mm, длина и ширина широкого, среднего и узкого отрезков t-резонатора соответственно 7, 8, 9 mm и 3.42, 1.1 и 0.1 mm. Материал подложки -Rogers RO3010, толщина диэлектрика 1.28 mm, относительная диэлектрическая проницаемость 10.2, тангенс угла диэлектрических потерь 0.0023 на частоте 10 GHz, толщина металлизации 0.035 mm. Расчеты характеристик и оптимизация конструкции выполнены трехмерным электромагнитным моделированием в программном пакете Microwave Studio. Согласно приближенных формул для параметров микрополосковых линий [3], импедансы отрезков t-резонатора равны 27, 50 и 112 Ω. Таким образом, $Z \approx 2$. Экспериментальные и расчетные значения f_0 , Δf и δ соответственно равны 3.62, 3.72; 0.86, 0.80 GHz; 0.7 и 0.5 dB.

Двухфазные КС позволяют сформировать высокоизбирательные резонансные и полосовые частотные характеристики.

Список литературы

- Назарько А.И., Нелин Е.А., Попсуй В.И., Тимофеева Ю.Ф. // Письма в ЖТФ. 2011. Т. 37. Вып. 4. С. 81–86.
- [2] Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 586 с.
- [3] Hong Jia-Shen G., Lancaster M.J. Microstrip filters for RF/microwave applications. N.Y.: Wiley, 2001. 488 p.