¹⁰ К вопросу о LO-TO-расщеплении мягкой моды в CaTiO₃

© Г.А. Командин, А.А. Волков, О.Е. Породинков, И.Е. Спектор, С.В. Чучупал

Институт общей физики им. А.М. Прохорова РАН, Москва, Россия E-mail: oporodinkov@ran.gpi.ru

(Поступила в Редакцию 3 декабря 2012 г.)

Выполнен дисперсионный анализ панорамного спектра отражения керамического титаната кальция по аддитивной и факторизованной моделям дисперсии с целью выяснения степени адекватности каждой из этих моделей для определения дисперсионных параметров фононных мод. Для кубической и орторомбической фаз установлено соответствие продольных и поперечных ИК-активных колебаний. Найдено гигантское LO–TO расщепление низкочастотной мягкой моды (700 cm⁻¹), приводящее к инверсии частот всех остальных ИК-инфракрасных колебаний, приходящихся на эту область. Результат находится в хорошем согласии с расчетами из первых принципов.

Работа выполнена в рамках программы фундаментальных исследований ОФН РАН "Современные проблемы радиофизики".

1. Титанат кальция CaTiO₃ является родоначальником структурного семейства перовскита и давно служит объектом всестороннего изучения, в частности, методами ИК- и КРС-спектроскопии [1–3]. Простота кристаллической структуры делает его удобным модельным объектом для экспериментальных и теоретических исследований динамики кристаллической решетки, физики структурных фазовых переходов и сегнетоэлектрических явлений.

При температурах до 1380 К титанат кальция имеет орторомбическую фазу, которая формируется за счет небольших искажений кубической решетки при наклоне кислородных тетраэдров и смещения ионов кальция. Она содержит четыре формульные единицы и характеризуется параметрами решетки $a \approx b \approx \sqrt{2}a_0$ и $c \approx 2a_0$, где $a_0 = 3.822$ Å — параметр неискаженной кубической решетки. Идеальная кубическая структура перовскита реализуется в титанате кальция при температурах выше 1580 К [4–6].

Титанат кальция в реальных условиях не переходит в полярное сегнетоэлектрическое состояние. По данным ИК- и КРС-спектроскопии сегнетоэлектрический фазовый переход орторомбической фазы уходит в область отрицательных температур и составляет около –140 К [5,7]. Переход в сегнетоэлектрическую фазу зависит от баланса между дальнодействующим кулоновским взаимодействием и короткодействующими силами. Прямым следствием кулоновского взаимодействия является расщепление частот продольного (LO) и поперечного (TO) оптических фононов

$$\nu_{\rm LO}^2 - \nu_{\rm TO}^2 = \frac{4\pi e_{\rm B}^2}{V\mu},\tag{1}$$

где $v_{\rm LO}$ и $v_{\rm TO}$ — частоты LO- и TO-фононов, $e_{\rm B}$ — заряд Борна, V — объем элементарной ячейки, μ — приведенная масса диполя. Чем больше эффективный заряд моды,

тем больше LO-TO-расщепление и соответственно ее диэлектрический вклад

$$\Delta \varepsilon_j = \varepsilon_{\infty} \, \frac{\nu_{j\text{LO}}^2 - \nu_{j\text{TO}}^2}{\nu_{j\text{TO}}^2} \prod_{k \neq j} \frac{\nu_{k\text{LO}}^2 - \nu_{j\text{TO}}^2}{\nu_{k\text{TO}}^2 \nu_{j\text{TO}}^2}.$$
 (2)

В [8,9] теоретически показано, что для кубической симметрии CaTiO₃ наибольшим эффективным зарядом обладает мягкая мода, она сильно связана с электрическим полем, при этом ее частота при $T = 0 \, \text{K}$ является мнимой и составляет 153*i* (по данным работы [4] 140*i* для кубической и 90 cm⁻¹ для орторомбической симметрии). Расчеты из первых принципов [8] предсказывают для перовскитов гигантское LO-TO-расщепление мягкой моды и, в частности, для кубического титаната кальция дают величину ~ 700 cm⁻¹. По измерениям диэлектрического отклика в частотном диапазоне от 1 kHz до 300 THz установлено, что величина и температурная эволюция диэлектрической проницаемости СаТіО₃ всецело сформированы мягкой модой [5,7,8] и при охлаждении от 300 К до температуры жидкого гелия его диэлектрическая проницаемость увеличивается в 2 раза [1,3,10].

Дисперсионный анализ колебательных возбуждений, установление взаимосвязей между частотами продольных и поперечных оптических фононов представляют сложную задачу. Нам известна только одна экспериментальная работа по исследованию диэлектрического отклика CaTiO₃ в ИК-области, в которой проведен детальный анализ спектров отражения [5]. В этой работе получено, что LO–TO-расщепление мягкой моды составляет ~ 30 cm⁻¹ для орторомбической симметрии и ~ 45 cm⁻¹ для кубической. Вместе с тем большая величина диэлектрической проницаемости титаната кальция ($\varepsilon \sim 170$) [3,10] должна давать в соответствии с формулой (2) существенно большее расщепление мягкой моды.

Рис. 1. Экспериментальные спектры отражения *R* и пропускания Tr (точки) керамики титаната кальция в ИК-диапазоне. Тонкая сплошная линия — спектр, рассчитанный по четырехпараметрической модели дисперсии для кубического CaTiO₃. Штрихпунктирная линия — расчет по трехпараметрической аддитивной модели дисперсии для кубического CaTiO₃. Жирная линия — расчет по четырехпараметрической аддитивной саTiO₃.

Цель настоящей работы состоит в том, чтобы на основе дисперсионного анализа экспериментальных панорамных спектров отражения и пропускания определить ИК-активные колебания, их диэлектрические параметры и установить взаимосвязи между продольными и поперечными модами.

2. Исходными данными для анализа были спектры отражения и пропускания керамики СаТіО₃, измеренные соответственно на ИК-Фурье-спектрометре Bruker IFS-113v в диапазоне 20–4000 сm⁻¹ и на ЛОВ (лампа обратной волны)-спектрометре [11] в субмиллиметровом диапазоне 4–20 сm⁻¹ при комнатной температуре.

Экспериментальные спектры отражения и пропускания керамики CaTiO₃ представлены на рис. 1 (точки). Период интерференции в спектре пропускания позволил напрямую (без использования интегральных преобразований Крамерса-Кронига определить суммарный диэлектрический вклад на низкочастотном краю колебательного спектра.

Дисперсионный анализ проводился по двум взаимодополняющим моделям. По трехпараметрической аддитивной модели рассчитывались спектры действительной $\varepsilon'(v)$ и мнимой $\varepsilon''(v)$ частей диэлектрической проницаемости

$$\varepsilon(\nu) = \varepsilon_{\infty} + \sum_{j=1}^{n} \frac{\Delta \varepsilon_{j} \nu_{j}^{2}}{\nu_{j}^{2} - \nu^{2} + i\nu\gamma_{j}},$$
(3)

или после разделения на действительную

$$\varepsilon'(\nu) = \varepsilon_{\infty} + \sum_{j=1}^{n} \frac{\Delta \varepsilon_{j} \nu_{j}^{2} (\nu_{j}^{2} - \nu^{2})}{(\nu_{j}^{2} - \nu^{2})^{2} + \gamma_{j}^{2} \nu^{2}}$$
(4)

и мнимую части

$$\varepsilon''(\nu) = \sum_{j=1}^{n} \frac{\Delta \varepsilon_j \nu_j^2 \nu \gamma_j}{(\nu_j^2 - \nu^2)^2 + \gamma_j^2 \nu^2},$$
(5)

где v_j — собственная частота, γ_j — затухание, $\Delta \varepsilon_j$ — диэлектрический вклад *j*-го поперечного оптического фонона.

В выражениях (3)–(5) в явном виде не присутствуют частоты продольных мод. Но исходя из спектров $\varepsilon'(v)$ и $\varepsilon''(v)$ можно рассчитать спектр Im(1/ ε^*), максимумы которого в первом приближении соответствуют частотам продольных оптических мод v_{jLO} . Однако этот метод не позволяет определить взаимосвязи между продольными и поперечными модами.

Соответствие ТО- и LO-мод устанавливает четырехпараметрическая факторизованная модель Лиддена-Сакса-Теллера [12,13], в которой есть два дополнительных подгоночных параметра: v_{jLO} и γ_{jLO} — собственная частота и затухание *j*-го продольного оптического фонона,

$$\varepsilon(\nu) = \varepsilon_{\infty} \prod_{j} \frac{\nu_{j\text{LO}}^2 - \nu^2 + i\nu\gamma_{j\text{LO}}}{\nu_{j\text{TO}}^2 - \nu^2 + i\nu\gamma_{j\text{TO}}}.$$
 (6)

Таблица 1	. Параметры дисперсионного мо	делирования	диэлектрического	отклика кубического	титаната кальция	(в скобках даны
параметры,	рассчитанные из первых принци	шов [8])				

Модель	Мода	$\nu_{\mathrm{TO}},~\mathrm{cm}^{-1}$	$\gamma_{\mathrm{TO}},~\mathrm{cm}^{-1}$	$\nu_{\rm LO},~{\rm cm}^{-1}$	$\gamma_{ m LO},~{ m cm}^{-1}$	$\Delta \varepsilon$	Im_{1-3}
Lorentz	1	115	17			130	10.7
	2	175	18			24	
	3	547	40			1.34	
LST	1	115(153 <i>i</i>)	17	804 (866)	51	130	
	2	175(188)	18	158 (133)	17	25	
	3	549(610)	31	496 (427)	27	1.38	

Расчет спектров диэлектрической проницаемости по этой модели не является однозначной процедурой из-за большого числа независимых переменных. Характер модели, в которой функция $\varepsilon(v)$ является произведением отношений параметров LO- и TO-мод, существенно усложняет процедуру расчета диэлектрических спектров. Поэтому определение дисперсионных параметров по модели (6) выполнено с учетом спектров $\varepsilon'(v)$ и $\varepsilon''(v)$ и параметров $\Delta \varepsilon_j$ и v_{jTO} , полученных из трехпараметрической модели (3). Критерием для определения частот продольных колебаний было равенство диэлектрических вкладов и частот поперечных колебаний для каждой моды. Погрешность в определении диэлектрических вкладов не превышала 10%, а в определении частот поперечных колебаний — 3-5%.

Анализ спектров проведен для кубической и орторомбической фаз титаната кальция.

В ИК-спектре кубической фазы перовскита активны три моды симметрии F_{1u} . Расчетный спектр отражения для суммы лоренцианов этих мод показан на рис. 1 штрихпунктирной линией. Для перовскитов характерно сильное взаимодействие между мягкой и высокочастотной модами, которое учтено введением в (3) комплексной константы взаимодействия мод [14,15]

$$\varepsilon(\nu) = \frac{s_1(\nu_2^2 - \nu^2 + i\nu\gamma_1) + s_2(\nu_1^2 - \nu^2 + i\nu\gamma_1) - 2\sqrt{s_1s_2}(\alpha + i\nu\delta)}{(\nu_1^2 - \nu^2 + i\nu\gamma_1)(\nu_2^2 - \nu^2 + i\nu\gamma_2) - (\alpha + i\nu\delta)^2},$$
(7)

где $s_j = \Delta \varepsilon v_j^2$ — сила осциллятора $(j = 1, 2), v_j$ — собственная частота, γ_j — затухание, α — действительная, а δ — мнимая части константы взаимодействия. В расчете использовалась только мнимая часть константы, отвечающая за деформацию контуров взаимодействующих мод. В верхней части табл. 1 приведены полученные величины собственных частот, затухания и диэлектрических вкладов трех F_{1u} -мод.

Соответствие между LO- и TO-модами определялось по четырехпараметрической модели дисперсии (6). Наряду с экспериментальным спектром отражения использовались рассчитанные по формулам (4), (5) спектры $\varepsilon'(v)$ и $\varepsilon'(v)$ (рис. 2). Результат расчета спектра отражения по этой модели показан для сравнения на рис. 1 сплошной жирной линией. Отличия от расчета по аддитивной модели минимальны и определяются

Физика твердого тела, 2013, том 55, вып. 6

погрешностями в определении взаимодействия мод 1 и 3. Дисперсионные параметры LO-мод, рассчитанные по модели (6), приведены в нижней части табл. 1.

Из рис. 2, а и табл. 1 следует, что вид спектра действительной части диэлектрической проницаемости $\varepsilon'(\nu)$ и величину диэлектрического вклада $\Delta \varepsilon$ определяет пер-

Рис. 2. Частотное распределение продольных и поперечных оптических фононов для кубического титаната кальция в виде спектров действительной $\varepsilon'(v)$ (*a*) и мнимой частей $\varepsilon''(v)$ диэлектрической проницаемости и функции диэлектрических потерь $\text{Im}(1/\varepsilon^*)$ (*b*) для кубического титаната кальция. Жирная линия — расчет по модели с тремя F_{1u} фононами, тонкая линия — расчет для одной мягкой моды.

вая (мягкая) мода. В спектрах $\varepsilon'(\nu)$, $\varepsilon''(\nu)$ и Im $(1/\varepsilon^*)$ на рис. 2 она показана тонкими линиями. Именно большая величина диэлектрического вклада первой моды ответственна за область отрицательных значений є' в диапазоне частот от 115 до $\sim 800\,{
m cm}^{-1}$. Гигантское LO-TO-расщепление ($\sim 690 \, \mathrm{cm}^{-1}$), которому соответствует большой диэлектрический вклад мягкой моды в сочетании с широкой областью отрицательных значений диэлектрической проницаемости, показано на рис. 2, b стрелками. Рис. 2, b содержит спектры мнимой части диэлектрической проницаемости, максимумы которой соответствуют частотам поперечных оптических фононов. Частоты продольных оптических фононов близки к максимумам мнимой части обратной диэлектрической проницаемости (функции диэлектрических потерь). Значения этой функции отложены на правой шкале рисунка.

Область LO-TO-расщепления первой (мягкой) моды от 115 до ~ $800 \,\mathrm{cm^{-1}}$ занимает весь частотный диапазон колебательного спектра CaTiO₃. Частоты второй ($\nu_{2TO} = 175 \,\mathrm{cm^{-1}}$, $\nu_{2LO} = 158 \,\mathrm{cm^{-1}}$) и третьей ($\nu_{3TO} = 549 \,\mathrm{cm^{-1}}$, $\nu_{3LO} = 486 \,\mathrm{cm^{-1}}$) мод оказываются в области этого расщепления. Случай, когда в зону LO-TO-расщепления мощной ИК-моды попадает вторая слабая мода, рассмотрен в работах [16,17]. Из анализа рис. 2 и табл. 1 следует три вывода.

1. Изменение порядка соответствующих продольных и поперечных частот второй и третьей мод (табл. 1). По терминологии работы [17], это инвертирование LO- и ТО-частот оптических фононов.

2. Сдвиг частоты TO_1 первой мощной моды к низким частотам, а $LO_1 - \kappa$ высоким. По нашей оценке сдвиг частоты моды LO_1 за счет взаимодействия с двумя слабыми модами составил 155 сm⁻¹ (показан на рис. 2, *b* изогнутой стрелкой).

3. Вывод, следующий из выражения (2) для величины диэлектрического вклада моды в четырехпараметрической модели (6). Инверсия LO- и TO-частот при расчете одной моды в спектре формально дает моду с отрицательным диэлектрическим вкладом, что указывает на противофазное колебание вектора поляризации второй моды по отношению к первой мощной моде.

Для орторомбической фазы CaTiO₃ с четырьмя формульными единицами теоретико-групповой анализ предсказывает наличие 25 ИК-активных мод [4]. В нашем расчете определено 18 ИК-активных колебаний. Для полного описания спектра отражения использован набор из 21 осциллятора. Дисперсионные параметры получены из модели (6) с использованием спектров $\varepsilon'(\nu)$ и $\varepsilon''(\nu)$ (рис. 3), рассчитанных, как и в случае кубической фазы по формулам (4), (5) (табл. 2). Параметры первой моды описывают низкочастотный отклик релаксаторного типа ($\gamma_{1TO} = 40 \text{ cm}^{-1} > \nu_{1TO} = 15 \text{ cm}^{-1}$). Данная релаксация определяется керамическим строением образца, и ее параметры зависят от структуры керамики [18–20]. Моды 2–19 характеризуют колебательный спектр СаTiO₃. Фононный спектр титаната кальция

Рис. 3. Частотное распределение продольных и поперечных оптических фононов для орторомбического титаната кальция в виде спектров действительной $\varepsilon'(v)(a)$ и мнимой частей $\varepsilon''(v)$ диэлектрической проницаемости и функции диэлектрических потерь Im $(1/\varepsilon^*)(b)$ для кубического титаната кальция.

охарактеризован в [2,4,5], за исключением интерпретации полос выше 550 сm⁻¹. Область выше 550 сm⁻¹ проявляется как деформация вершины высокочастотной полосы отражения (рис. 1), обусловленная суммарными двухфононными процессами поглощения [21,22]. Этот феномен с различной степенью выраженности присутствует практически во всех ионных кристаллах. В нашем случае суммарные двухфононные процессы поглощения учтены введением осцилляторов 20 и 21. Сплошные расчетные кривые на рис. 1, практически совпадающие с экспериментальными панорамными спектрами отражения и пропускания орторомбического титаната кальция, демонстрируют адекватное описание последних примененными моделями дисперсии и определенным набором дисперсионных параметров.

На рис. 3 представлены спектры диэлектрического отклика титаната кальция, рассчитанные по параметрам дисперсионного моделирования для орторомбической симметрии CaTiO₃ (табл. 2). Так же как в случае кубической симметрии, имеет место гигантское расщеп-

№ п/п	$v_{\rm TO},~{\rm cm}^{-1}$	$\gamma_{\rm TO},~{\rm cm}^{-1}$	$v_{\rm LO},~{\rm cm}^{-1}$	$\gamma_{\rm LO},~{\rm cm}^{-1}$	$\Delta \varepsilon$
1	15	40	15.228	40	4.71
Relax					
2	104.1	19.5	804.7	39.3	108.8
3	127.1	21.1	122	21.0	18.4
4	159.3	7.2	157.1	8.2	2.01
5	169.9	6	167.2	8	2.46
6	187.0	4.85	186.1	5.9	0.10
7	193.4	26.7	187.9	33.7	4.05
8	225.3	10.6	222.6	13.2	0.89
9	250.6	56.1	244.3	58.0	1.50
10	262.0	15.0	260.2	15.0	0.57
11	283.1	36.5	280.1	35.1	0.56
12	304.2	11.3	301.0	9.8	0.43
13	317.4	11.1	315.0	11.2	0.35
14	334.3	25.0	332.3	26.0	0.21
15	377.1	29.0	372.9	40.1	0.20
16	400.0	29.0	394.5	27.4	0.20
17	<i>439</i> .7	38.9	421.6	28.6	0.59
18	496.9	16.7	482.5	16.5	0.05
19	543.3	39.5	500.0	11.3	1.69
20	603.6	99.1	603.5	78.0	0.002
21	672.0	40	671.5	40	0.005

Таблица 2. Параметры дисперсионного моделирования диэлектрического отклика орторомбического титаната кальция

ление продольной и поперечной частот мягкой моды (осциллятор 2). Спектр действительной части диэлектрической проницаемости (рис. 3, *a*) аналогичен спектру кубического титаната кальция. Область LO–TO-расщепления мягкой моды, составляющего ~ 700 сm⁻¹, распространяется между низкочастотным максимумом $\varepsilon''(v)$ и высокочастотным максимумом Im $(1/\varepsilon^*(v))$. Для наглядности они выделены на рис. 3, *b* жирными линиями. Все ИК-активные колебания попали в область отрицательных значений ε' , т. е. в область LO–TO-расщепления мягкой моды. Как следствие этого, частоты продольных и поперечных составляющих этих колебаний (осцилляторы с 3 по 19 в табл. 2) инвертированы. В табл. 2 параметры инвертированных фононов выделены курсивом.

3. Расчеты функций диэлектрического отклика кубического и орторомбического титаната кальция на основе экспериментальных панорамных спектров отражения и пропускания показали в обоих случаях наличие большого LO–TO-расщепления мягкой моды, составляющего ~ 690 и ~ 700 cm⁻¹ соответственно. Полученные результаты хорошо согласуются с результатами расчетов из первых принципов для кубического титаната кальция [8].

Весь фононный спектр титаната кальция оказался в частотном диапазоне LO-TO-расщепления мягкой моды. Следствиями этого явились инверсия частот продольных и поперечных оптических фононов, попавших в область расщепления мягкой моды, и сдвиг частоты продольной оптической моды к высоким частотам. Можно предположить, что подобная ситуация может иметь место и в случае других кислородно-октаэдрических сегнетоэлектриков с большим диэлектрическим вкладом мягкой моды.

Проведенный дисперсионный анализ спектров отражения и пропускания керамики титаната кальция показал, что для исследования функции диэлектрического отклика необходимо одновременное применение взаимодополняющих и уточняющих моделей дисперсии: аддитивной трехпараметрической и факторизованной четырехпараметрической.

Список литературы

- [1] A. Linz, K. Herrington. J. Chem. Phys. 28, 824 (1958).
- [2] C.H. Perry, B.N. Khanna, G. Rupprecht. Phys. Rev. 135, 2A, A408 (1964).
- [3] G. Rupprecht, R.O. Bell. Phys. Rev. 135, 2A, A748 (1964).
- [4] E. Cockayne, B.P. Burton. Phys. Rev. B 62, 6, 3735 (2000).
- [5] V. Železný, E. Cockayne, J. Petzelt, M.F. Limonov, D.E. Usvyat, V.V. Lemanov, A.A. Volkov. Phys. Rev. B 66, 224 303 (2002).
- [6] S.A.T. Redfern. J. Phys.: Cond. Matter 8, 8267 (1996).
- [7] А.А. Волков, Г.А. Командин, Б.П. Горшунов, В.В. Леманов, В.И. Торгашев. ФТТ 46, 5, 899 (2004).
- [8] W. Zhong, R.D. King-Smith, D. Vanderbilt. Phys. Rev. Lett. 72, 22, 3618 (1994).
- [9] R.D. King-Smith, D. Vanderbilt. Phys. Rev. B **49**, *9*, 5828 (1994).
- [10] V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht. Appl. Phys. Lett. 81, 886 (2002).
- [11] G.V. Kozlov, A.A. Volkov. Topics Appl. Phys. 74, 51 (1998).
- [12] R.H. Lyddane, R.G. Sachs, E. Teller. Phys. Rev. 59, 673 (1941).
- [13] F. Gervais. High-Temperature infrared reflectivity spectroscopy by scanning interferometry. Infrared and millimeter waves/ Ed. K.J. Button. Academic Press, N.Y. (1983). 8, N 7. P. 279.
- [14] A.S. Barker, Jr., J.J. Hopfield. Phys. Rev. 135, 6A, A1732 (1964).
- [15] A.S. Barker, Jr. In: Proc. of the Symp. on ferroelectricity/ Ed. E.F. Weller. Elsevier Publ. Company, N.Y. (1967). P. 213.
- [16] J.-F. Baumard, F. Gervais. Phys. Rev. B 15, 4, 2316 (1977).
- [17] Е.А. Виноградов, Б.Н. Маврин, Н.Н. Новикова, В.А. Яковлев. УФН **179**, *3*, 313 (2009).
- [18] J. Petzelt, T. Ostapchuk, I. Gregora, I. Ryhetský, S. Hoffmann-Eifert, A.V. Pronin, Yu. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorný, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vaněk, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, R. Waser. Phys. Rev. B 64, 184 111 (2001).
- [19] J. Perzelt, S. Kamba, J. Hlinka. In: New developments in advanced functional ceramics / Ed. L. Mitoseriu. Transworld research network, Kerala, India (2007). P. 387.
- [20] Г.А. Командин, В.И. Торгашев, А.А. Волков, О.Е. Породинков, А.А. Пронин, Л.Д. Исхакова, А.А. Буш. ФТТ 54, 6, 1120 (2012).
- [21] E. Burstein, F.A. Johnson, R. Loudon. Phys. Rev. 139, 4A, A1239 (1965).
- [22] J.T. Gourley, W.A. Runciman. J. Phys. C 6, 583 (1973).