07;12

Структура временного фотоотклика полупроводниковых сенсоров

© А.В. Бут, В.П. Мигаль, А.С. Фомин

Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт», 61070 Харьков, Украина

e-mail: khai_physical_lab@xai.edu.ua

(Поступило в Редакцию 18 августа 2011 г.)

Установлено, что преобразование временного фотоотклика I(t) кристалла в сигнатуру I(t) - dI/dt фазовой плоскости позволяет определить парциальные вклады составляющих структуры фотоотклика и степень их взаимосвязи, а также предложить интегративные показатели устойчивости B_{din} и асимметрии $K_{\lambda,E}$ структуры фотоотклика, отображающие влияние внешних и внутренних факторов соответственно.

Применение полупроводниковых сенсоров на основе многокомпонентных соединений $A^{II}B^{VI}$ и $A^{I}B^{III}C^{VI}$ выявило ряд взаимосвязанных эксплуатационных и диагностических проблем, среди которых ключевой остается определение их качества. Так, на некоторых сенсорах на основе кристаллов CdTe:Cl, CdZnTe даже с высокими значениями произведения подвижности неравновесных носителей заряда μ на время их жизни τ $(\mu \tau \ge 10^3 \, {
m cm^2/V})$ в экстремальных условиях проявляются артефакты и неустойчивости временного I(t) и спектрального $I(\lambda)$ фотооткликов (ФО) [1]. При этом их выявление и анализ в обычных условиях весьма затруднительны и зачастую неоднозначны [2]. Об этом свидетельствует невысокая эффективность отбора сенсорных кристаллов на основе произведения $\mu \tau$. Тем не менее преобразование спектрального фотоотклика $I(\lambda)$ в соответствующую сигнатуру $I(\lambda) - dI/d\lambda$ позволило установить количество составляющих спектрального ФО [3,4]. Его изменение при увеличение интенсивности фотовозбуждения или величины внешнего электрического поля свидетельствует о том, что кристаллы многокомпонентных соединений как объект исследования являются сложной динамической системой. Очевидно, изменения в структуре ФО таких кристаллов связаны с перестройкой взаимосвязей между подсистемами кристалла, для анализа которой необходимы показатели, интегративно отображающих их системные изменения при тестовом воздействии, что и было основной целью настоящей работы.

Объектом для исследований были выбраны кристаллы твердых растворов $Cd_{1-x}Zn_x$ Те (x = 0.05-0.16). Их параметры и методика эксперимента приведены в работах [3,4].

Форма кинетики фототока (ФТ) I(t) для большинства исследованных кристаллов CdZnTe при тестировании П-образными монохроматическими фотоимпульсами мало зависит от длины волны излучения λ , величины и направления электрического поля **E** (рисунок, *a*). Однако преобразование зависимости I(t) в сигнатуру I(t) - dI/dt фазового пространства позволило выявить индивидуальные динамические особенности структуры оцифрованного фотоотклика сенсоров (рисунок, b) [5]. Как видно из рисунка, b, конфигурация сигнатуры I(t) - dI/dt кинетики ФТ представляет собой замкнутую последовательность из *n* дугообразных участков, которые отличаются длиной l и кривизной C = 1/R, где *R* — радиус кривизны соответствующего дугообразного участка. Поэтому сигнатура I(t) - dI/dt кинетики $\Phi T I(t)$ является своеобразным фотоэлектрическим циклом. В его конфигурации достаточно хорошо просматриваются составляющие ФО, а площадь цикла отображает некое множество возможных фотоиндуцированных динамических (ФИД) микросостояний. Поэтому парциальный вклад каждой составляющей ФО можно оценить посредством показателя $P_i = l_i \cdot C_i / 2\pi$. Как видно из рисунка, b, изменение направления смещающего поля **E** на противоположное сопровождается перераспределением парциальных вкладов Р_і пяти-шести взаимосвязанных составляющих ФО, что свидетельствует о перестройке структуры кинетики ФТ кристаллов CdZnTe. В большинстве исследованных образцов количество и величина парциальных вкладов P_i составляющих ФО также зависит от длины волны излучения λ и величины электрического поля Е. Поэтому с увеличением номера і дугообразного участка как при нарастании, так и при релаксации ФТ, парциальные вклады P_i соответствующих составляющих ФО и их разрешение уменьшаются (рисунок, b). Очевидно, это свидетельствует об увеличении степени взаимосвязи f_{rel} между этими составляющими ФО. Действительно, с увеличением і произведение неопределенности измерении длины Δl_i на неопределенность измерения кривизны $\Delta C_i = 1/\Delta R_i$ порядка 1, т.е. $\Delta l_i \cdot \Delta C_i = 1$, что и ограничивает разрешающую способность определения составляющих структуры ФО сенсоров.

Поскольку площадь фотоэлектрического цикла I(t) - dI/dt в фазовом пространстве отображает мощность множества возможных ФИД-микросостояний W [4,5], то можно предположить, что натуральный логарифм от W определяет энтропию $S_B = k \ln W$ неравновесного микросостояния кристалла как системы в данный момент времени. Тогда по изменению площади сигнатуры I(t) - dI/dt в последовательности фотоэлектрических циклов и соответствующего изменения эн-

Типичные кинетики фототока I(t) кристалла Cd_{0.9}Zn_{0.1}Te (a) и их сигнатуры I(t) - dI/dt (b) при $\lambda = 800$ nm и противоположных направлений смещающего поля E: прямом — сплошная линия, обратном — штриховая линия. Разделительными точками 0–14 и 0–15' выделены соответствующие дугообразные участки сигнатур.

тропии ΔS_B можем определить обратимы или необратимы эти циклы, используя энтропийный критерий необратимости $\Delta S \ge 0$. Действительно, для одних длин волн (800 и 860 nm) изменение площади сигнатуры кинетики ФТ со временем (более 10^3 циклов) характеризуется необратимым увеличением мощности подмножества ФИД-микросостояний (разность площадей $\Delta S = S_{t2} - S_{t1} > 0$), а для других (900 nm) $\Delta S = 0$. Следовательно, характер перестройки зависит от длины волны фотовозбуждения λ и напряженности поля **E**, что указывает на изменение степени взаимосвязи между составляющими ФО.

Исходя из изложенного выше, парциальному вкладу каждой динамической составляющей ФО

соответствие определенное можно поставить в подмножество возможных ФИД микросостояний кристалла. Это позволило осуществить декомпозицию структуры ФО посредством представления множества ФИД микросостояний кристалла как совокупности подмножеств $\{W_1,\ldots,W_i,W_{i+1},\ldots,W_n\}\in W,$ гле $i \in \{1 \dots n\},\$ каждое из которых отображает определенную составляющую структуры ФО-кристалла. Поскольку операции произведения, деления и т.д. подмножеств $\{W_1, \ldots, W_i, W_{i+1}, \ldots, W_n\}$ являются новыми подмножествами, то отношения между ними позволяют анализировать изменения характера взаимосвязи между составляющими структуры ФО. Так, для оценки степени взаимосвязи между соседними составляющими ФО представим себе, что каждый і-й дугообразный участок сигнатуры является сегментом окружности площадью S_i, которая отображает мощность с подмножества возможных для *i*-го парциального вклада ФИД микросостояний кристалла. При этом площади соседних і и і + 1 сегментов перекрываются (пересекаются) (рисунок, b, заштрихованные области). Площадь заштрихованной области отображает мощность нового подмножества общих микросостояний W_i^{com}, которую можно определить через операцию произведения *i* и i + 1 подмножеств $W_i^{com} = W_i \cap W_{i+1}$. Затем посредством операции симметричной разности подмножеств W_i и W_{i+1} определим мощность подмножества индивидуальных ФИД-микросостояний $W_i^{ind} = W_i \Delta W_{i+1}$. Тогда операция отношения *R* двух новых подмножеств W_i^{com} и W_i^{ind} , т.е. $f_i^{rel} = W_i^{com} R W_i^{ind}$, определяет степень взаимосвязи f^{rel} перекрывающихся во времени соседних составляющих ФО.

Оказалось, что с увеличением номера составляющей ΦO *i* мощность W_i уменьшается, а степень их взаимосвязи f_i^{rel} действительно увеличивается. Аналогичным образом протекает процесс релаксации ФТ. Очевидно, неравенство площадей составляющих сигнатур S^+ и S^- , ограниченных контурами $0-1-\ldots-7-0$ и $0-7-\ldots 15'-0$ (рисунок, b), т.е. $S^+ - S^- \neq 0$, является следствием динамических особенностей генерационно-рекомбинационных процессов в фотоэлектрическом цикле. При этом системные изменения в структуре кинетики ФТ интегративно отображаются отношением площадей S^+/S^- (рисунок, b), что позволяет ввести безразмерный показатель устойчивости структуры ФО $B_{din} = S^+/S^-$. Его стремление к единице, по сути, указывает на обратимость данного фотоэлектрического цикла. Действительно, при фотовозбуждении из области $\lambda = 920$ nm показатель устойчивости структуры ФО $B_{din} \approx 1$. Это подтверждает, что конфигурация соответствующей сигнатуры I(t) - dI/dt кинетики ΦT не зависит от направления и величины внешнего поля Е, фотоактивной предыстории и практически не изменяется со временем. Поэтому кинетика ФТ стабильна, а такой фотоэлектрический цикл, следовательно, обратим. С другой стороны, при фотовозбуждении длинами волн 800 и 860 nm показатель $B_{din} \neq 1$. При этом выявлено изменение конфигурации сигнатуры I(t) - dI/dtкак со временем, так и при увеличении напряженности внешнего поля Е. Кроме того, установлены необратимые изменения конфигурации сигнатур I(t) - dI/dt после фотоэлектро-акустической обработки части образцов, для которых B_{din} в процессе стремится к единице. Следовательно, устойчивый цикл обратим. При этом зависимость показателя устойчивости структуры ФО B_{din} от длины волны фотовозбуждения λ указывает на перестройку энергетического спектра, которая была обнаружена в спектрах ФТ [3,4] и, как оказалось, связана с перезарядкой сложных центров фоточувствительности. Обнаруженную на ряде образцов асимметрию сигнатур I(t) - dI/dt кинетики ФТ, полученных при прямом (\downarrow) и обратном (\uparrow) направлениях поля **E**, но при фиксированной λ, можно интегративно оценить с помощью показателя асимметрии ФО К_{λ.Е}. Он равен отношению показателей $K_{\lambda,E} = B_{din}^{\uparrow}/B_{din}^{\downarrow}$, характеризующих динамическую устойчивость при противоположных направлениях поля Е. Причиной асимметрии ФО являются внутренние факторы (сильные градиенты поля, нелинейность, асимметрия центров фоточувствительности и др.). Так, нелинейный характер изменения фазовых траекторий сигнатур соответствующих ВАХ данных кристаллов [6,7] указывает на то, что одной из причин асимметрии ФО в кристаллах CdZnTe может быть индуцированная при $E > E_{cr}$ нелинейность. Поэтому применение показателей асимметрии К_{λ,E} и устойчивости составляющих ФО B_{din}, которые чувствительны к внутренним и внешним факторам соответственно, позволяет установить, с одной стороны, диапазоны внешних воздействий (ΔE , $\Delta \lambda$, Δf , ...), в которых происходят необратимые изменения фотоэлектрического цикла, что важно при обработке кристалла. С другой стороны подобрать условия эксплуатации сенсора, при которых фотоэлектрический цикл обратим.

Таким образом, переход от традиционного временного I(t) представления ФО-кристалла к соответствующим сигнатурам I(t) - dI/dt фазовой плоскости позволяет выявлять структуру ФО, т.е. определять количество *n* и величину парциальных вкладов отдельных его составляющих P_i , а также степень их взаимосвязей f_i^{rel} . Очевидно, индивидуальные особенности кинетики I(t) ФТ обусловлены перестройкой составляющих ее структуры. С помощью интегративных показателей B_{din} и $K_{\lambda,E}$, чувствительных к внешним и внутренним факторам соответственно, стало возможным определять необратимость протекающих фотоэлектрических циклов. Предложенные показатели P_i, f_i^{rel}, B_{din} и $K_{\lambda,E}$ могут способствовать решению ряда взаимосвязанных технологических, диагностических и эксплуатационных проблем сенсорных и других современных материалов.

Работа выполнена при финансовой поддержке Государственного фонда фундаментальных исследований Украины.

Список литературы

- [1] Abbene L., Del Sordo S. et al. // Nucl. Sci. Symp. Conf. Record. 2007. Vol. 2. P. 1525–1530.
- [2] Koley G., Liu J., Mandal Krishna C. // Appl. Phys. Lett. 2007.
 Vol. 90. P. 102 121.
- [3] Бут А.В., Мигаль В.П., Фомин А.С. // ФТП. 2009. Т. 43. Вып. 9. С. 1257–1260.
- [4] Бут А.В., Мигаль В.П., Фомин А.С. // ФТП. 2009. Т. 43. Вып. 5. С. 608-612.
- [5] *Мигаль В.П., Фомин А.С.* // Неорганические материалы. 2007. Т. 43. № 11. С. 1316–1320.
- [6] Мигаль В.П., Фомин А.С. // Письма в ЖТФ. 2006. Т. 32. Вып. 11. С. 44–51.
- [7] Fu D.J., Lee J.C., Choi S.W. et al. // Appl. Phys. Lett. 2002, Vol. 81. N 27. P. 5207.