05;07

Воздействие импульсного магнитного поля на галогенсеребряный фотографический процесс

© Д.Р. Фролов, А.П. Бойченко

Кубанский государственный университет, 350040 Краснодар, Россия e-mail: mr.frol@bk.ru, bojchenco@yandex.ru

(Поступило в Редакцию 18 августа 2011 г.)

На примере галогенсеребряных фотографических материалов отечественного и зарубежного производства исследовано воздействие импульсного магнитного поля на формирование изображений при их световой и газоразрядной экспозиции. Показано, что одиночный импульс поля напряженностью 4.2 kOe и длительностью 0.12 s, синхронизированный со световой вспышкой существенно повышает светочувствительность фотоматериалов и не влияет на нее до световой экспозиции. Предварительное воздействие на свежеизготовленные фотоматериалы серии из 250 импульсов магнитного поля с указанными характеристиками приводит к уменьшению их газоразрядной чувствительности, а у состарившихся в течение 8 лет — к ее увеличению.

В 1959 г. Дж. Ротштейном был описан обнаруженный эффект изменения светочувствительности (СЧС) галогенсеребряных фотоматериалов под действием на них синхронизированных друг с другом импульсного электрического поля напряженностью 107-108 V/m и вспышки света [1]. Спустя почти полвека о влиянии постоянного и импульсного магнитных полей (ИМП) напряженностью до 10 kOe на галогенсеребряный фотографический процесс было сообщено в работе [2] и спектрально-люминесцентным методом исследован возможный механизм этого процесса, выявивший существенные преобразования серебряных центров СЧС в фотоэмульсионных микрокристаллах (МК) галоидного серебра (AgHal) под действием ИМП, в частности, приводящего к уменьшению СЧС у свежеизготовленных фотослоев и ее увеличение — у хранившихся в течении 10 лет после изготовления. Однако в упомянутой работе [2] галогенсеребряный фотографический процесс исследовался только после воздействия на фотоматериалы серии из $1.5 \cdot 10^6$ ИМП длительностью $2 \cdot 10^{-5}$ s или в постоянном магнитном поле после их экспонирования светом. Поэтому не меньший практический и научный интерес представляет результат совместного действия на галогенсеребряные фотоматериалы одиночного ИМП, синхронизированного со вспышкой света, идентично описанного в [1] с использованием импульсного электрического поля.

Исследование этого воздействия осуществлялось на установке, схема конструкции которой приведена на рисунке. Для синхронизации ИМП и вспышки света на обмотке электромагнита наматывалась дополнительная, к которой через переменный резистор (для регулировки яркости) подключался светодиод, имеющий в спектре максимум излучения ~ 400 нм. Разрядом конденсатора электроемкостью $2 \cdot 10^{-4}$ F через тиристор на обмотку электромагнита, между его наконечниками создавался ИМП напряженностью 4.2 kOe и длительностью 0.12 s. При этом длительность светового импульса составляла порядка 0.09 s.

В качестве исследуемых фотоматериалов выбирались фотопленки отечественного и зарубежного производства с различным средним диаметром $\bar{\mu}$ MK AgHal: рентгеновские RETINA, PRIMAX и Agfa (фирма ILFORD); для любительской фотографии HP5 PLUS (фирма ILFORD) и для микрофильмирования — Микрат-орто (производство ОАО Тасма, Казань). Последняя фотопленка исследовалась в двух вариантах: с ее оптическим сенсибилизатором (ОС) и отмытой от него. Экспонирование каждого фотоматериала осуществлялось в двух вариантах: одиночной световой вспышкой с ИМП и без поля. Первый вариант являлся опытным, а второй контрольным. После чего производилась их химикофотографическая обработка по режимам, регламентированным фирмами-производителями. Эффект влияния ИМП η на фотографический процесс оценивался по формуле, предложенной в [3]:

$$\eta = \frac{D_1 - D_2}{D_2}$$

где D_1 — интегральная оптическая плотность изображения на фотопленке, экспонированной одиночной вспышкой света и ИМП; D_2 — интегральная оптическая плотность изображения на фотопленке, экспонированной только одиночной вспышкой света. (Значения

Схема экспериментальной установки для изучения фотографических процессов в ИМП: 1 — наконечники электромагнита, 2 — оптоволоконный провод, 3 — источник света (светодиод), 4 — полимерная подложка фотопленки, 5 — фоточувствительный эмульсионный слой.

Фотоматериал	$\bar{\mu}, \mu \mathrm{m}$	D_1	D_2	η
HP5 PLUS	~ 1.710	0.457 ± 0.011	0.403 ± 0.010	0.134
RETINA		0.261 ± 0.006	0.168 ± 0.005	0.553
PRIMAX	1.090 - 1.500	0.208 ± 0.005	0.193 ± 0.005	0.077
Agfa		0.212 ± 0.005	0.159 ± 0.004	0.333
Микрат-орто		0.042 ± 0.001	0.047 ± 0.001	-0.106
Микрат-орто (без ОС)	0.065	0.109 ± 0.002	0.038 ± 0.001	1.919

Таблица 1. Эффект воздействия на различные фотоматериалы одиночного ИМП, синхронизированного со светлой вспышкой

Таблица 2. Результаты различных режимов магнитополевой обработки рентгеновской фотопленки RETINA на формирование газоразрядных изображений БГР

Режим обработки фотоматериала	Состояние фотоматериала	D_3	D_4	η_{GDI}
	Свежеизготовленный	0.349 ± 0.004	0.352 ± 0.004	0
Одиночный инин	Состарившийся в течение 8 лет	0.277 ± 0.004	0.275 ± 0.003	0
	Свежеизготовленный	0.295 ± 0.003	0.352 ± 0.004	-0.162
Серия из 250 инчит	Состарившийся в течение 8 лет	0.298 ± 0.004	0.275 ± 0.003	0.084

параметров D_1 и D_2 получены при вычете оптической плотности вуали.) Результаты проведенных исследований представлены в табл. 1 с ориентировочными значениями $\bar{\mu}$ [4].

Из табл. 1 видна хорошо известная из физики фотографического процесса закономерность [4,5]: с увеличением $\bar{\mu}$ MK AgHal растет их СЧС, что в нашем случае следует из параметра D₂. Данные таблицы также показывают, что почти на всех исследованных галогенсеребряных фотопленках одиночный ИМП длительностью 0.12 s и напряженностью 4.2 kOe увеличивает на них интегральную оптическую плотность световых изображений (D₁). Подобно электрическому полю [1] оно оказывает сенсибилизирующее действие на фотоматериалы. Однако имеется и отличительная черта, выявленная на фотопленке Микрат-орто. Будучи с ОС, формируемое на ней оптическое изображение ослабляется ИМП, а при отмытом сенсибилизаторе эффект η оказывается превосходящим все исследованные фотопленки. Полученные результаты показывают, что механизмы процессов действия ИМП на галогенсеребряные фотоматериалы до их экспонирования светом (как, например, описано в [2]) и во время него, отличаются друг от друга.

С целью выяснения этих отличий и установления влияния преобразованных ИМП серебряных центров СЧС в МК AgHal [2] на формирование фотографических изображений были проведены отдельные исследования с рентгеновской пленкой RETINA как свежеизготовленной, так и имеющую повышенную вуаль в результате восьмилетнего хранения. Эксперименты проводились в десятикратной повторности с перечисленными партиями фотопленок в трех вариантах. В первом, обе партии фотопленки обрабатывались одиночным ИМП на описанной выше установке без использования источника света, и спустя 0.5 h после этого экспонировались барьерным газовым разрядом (БГР) лавинной формы, возбуждаемого в воздухе атмосферного давления одиночным колоколообразным видеоимпульсом напряжения ~ 6 kV положительной полярности (относительно электрода, на котором покоится фотоматериал) и длительностью 7 · 10⁻⁶ s на установке, описанной нами в [6]. Во втором варианте такие же партии фотопленки обрабатывались 250 ИМП и затем также экспонировались БГР. В третьем варианте эксперимента партия фотопленок являлась контрольной и экспонировалась только разрядом, без обработки ИМП. Выбор БГР в качестве экспонирующего фактора и его возбуждение импульсами положительной полярности определялись на основе ранее выявленных закономерностей процессов формирования газоразрядных изображений (ГРИ) при разнополярных импульсах высоковольтного напряжения, заключающихся в том, что при импульсах положительной полярности создается "электронно-фотонное" изображение, образованное как поверхностными, так и глубинными центрами СЧС в МК AgHal, а при отрицательной — только поверхностное "ионно-фотонное" изображение [7]. Поэтому изменения системы дефектов в объеме МК под действием ИМП [8] должны существенно проявиться на характере формирования "положительного" ГРИ.

Эффект влияния магнитополевой обработки на формирование ГРИ η_{GDI} оценивался по формуле, аналогичной приведенной выше:

$$\eta_{GDI}=\frac{D_3-D_4}{D_4},$$

где D_3 — интегральная оптическая плотность ГРИ на фотопленке, предварительно обработанной в ИМП; D_4 — интегральная оптическая плотность ГРИ на фотопленке, экспонированной только разрядом. Результаты этих исследований представлены в табл. 2.

Из нее видна ранее установленная в [2] закономерность: предварительная обработка свежеизготовленной фотопленки серией из 250 ИМП напряженностью 4.2 kOe и длительностью 0.12 s по сравнению с контрольным вариантом приводит к уменьшению интегральной оптической плотности ГРИ, т.е. к "отрицательному" фотографическому эффекту его действия при формировании изображений, а для состарившихся — к небольшому "положительному". Характерно, что интегральная оптическая плотность ГРИ D₃ на состарившейся фотопленке после ее обработки серией ИМП совпадает (в пределах погрешности измеренного значения D_3) со значением этого параметра для ГРИ на свежеизготовленном фотоматериале. При этом обработка одиночным ИМП какого-либо действия на дальнейший фотографический процесс не оказала. Таким образом, явно выявились отличия в действии ИМП на фотоматериалы в момент их экспонирования и до этой процедуры [2].

Полученные результаты свидетельствуют, что те или иные режимы использования магнитных полей в галогенсеребряном фотографическом процессе запускают принципиально различные механизмы его протекания. Установление физической природы и сущности этих механизмов имеет большой практический интерес, открывающий перспективу управления СЧС фотоматериалов к магнитным полям по заданной программе.

Список литературы

- [1] Rothstein J. // Photographic. Sci. and Eng. 1959. Vol. 3. P. 225.
- [2] Волошина Т.В., Дронов М.А., Ефимова М.А. и др. // Химия высоких энергий. 2005. Т. 39. № 3. С. 213-217.
- [3] Певчев Ю.Ф., Калашникова В.И., Коновалова Л.П. // Журн. научной и прикладной фото- и кинематографии. 1970. Т. 15. С. 250-260.
- [4] Зеликман В.Л., Леви С.М. Основы синтеза и полива фотографических эмульсий. М.: Искусство, 1960. 356 с.
- [5] Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. М.: Наука, 1972. 400с.
- [6] *Бойченко А.П.* // Журн. научной и прикладной фотографии. 2002. Т. 47. № 3. С. 50-52.
- [7] *Бойченко А.П.* // Журн. научной и прикладной фотографии. 2002. Т. 47. № 3. С. 53-56.
- [8] Волошина Т.В., Левин М.Н., Дронов М.А., Кавецкая Т.В. // Письма в ЖТФ. 2006. Т. 32. Вып. 2. С. 84-89.