05;06;07;12

Белая, зеленая и желтая фотолюминесценция в системе (CaO \cdot Al₂O₃ \cdot SiO₂) : Eu

© Н.Т. Гурин, К.В. Паксютов, М.А. Терентьев, А.В. Широков

Ульяновский государственный университет, 432970 Ульяновск, Россия e-mail: gurinnt@sv.ulsu.ru

(Поступило в Редакцию 16 декабря 2010 г.)

Показано, что полученные методом прямого твердотельного синтеза при температуре 1350° C на воздухе фотолюминофоры в системе (2CaO · m(Al₂O₃) · SiO₂) : Еи при возбуждении азотным лазером дают излучение белого, зеленого и желтого цветов при уменьшении содержания Al₂O₃ в составе от m = 0.4 до 0.05. При этом координаты цветности данных цветов свечения соответствуют координатам систем цветовой сигнализации по МКО и близки к координатам цветности основных цветов телевизионных систем EBU и NTSC.

Для создания современных светодиодных излучателей белого цвета свечения, средств отображения информации и систем световой сигнализации важным является поиск новых высокоэффективных люминофоров белого, красного, зеленого, синего и желтого цветов свечения, возбуждаемых в ультрафиолетовой или синей областях спектра [1–4].

Ранее нами было показано [5], что полученные методом прямого твердотельного синтеза при температуре 1300°C на воздухе люминофоры в системе $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Еи при возбуждении азотным лазером дают широкополосную фотолюминесценцию, перекрывающую видимую область спектра, причем после отжига в вакууме люминофор $(CaO \cdot Al_2O_3 \cdot 2SiO_2)$: Eu дает свечение, соответствующее синему цвету по МКО, отжиг состава (CaO \cdot Al₂O₃ \cdot SiO₂) : Еи приводит к изменению цвета свечения с красного, близкого к цветовому телевизионному стандарту EBU, на синий, соответствующий этому же стандарту, а состав $(CaO \cdot 2Al_2O_3)$: Eu дает излучение красного цвета, близкого к цветовому стандарту NTSC. Широкая полоса люминесценции при этом объяснялась фазовой неоднородностью составов, включающих блоки различных алюминатов и силикатов кальция, а также переходами в ионах Eu^{3+} и Eu^{2+} . После отжига в вакууме фотолюминесценция обусловлена в основном переходами в ионе Eu^{2+} и смещается в более коротковолновую часть спектра [5].

Целью работы является дальнейшее исследование фотолюминесценции в системе $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Еи в условиях повышенной фазовой однородности составов и в направлении получения других цветов свечения, кроме синего и красного, соответствующих основным цветам свечения телевизионных стандартнов EBU и NTSC, а также системам световой сигнализации по MKO.

Для повышения фазовой однородности синтез всех люминофоров проводили при повышении температуры по сравнению с [5] до 1350° С. Кроме того, была исследована возможность улучшения условий синтеза путем добавления в систему небольшого количества (до 6 wt.%) оксида бора B_2O_3 , играющего в соответствии

с [6] роль высокотемпературного флюса, облегчающего протекание реакции синтеза. Люминофоры получали путем прямой твердотельной реакции порошкообразных компонентов. Для приготовления люминофоров использовали следующие материалы: Al₂O₃ (марки "Ч" содержание Al₂O₃ 99.5%), SiO₂ (кварцевое стекло с содержанием SiO₂ > 99.7%), CaO ("ОСЧ" — содержание CaO 99.999%), B₂O₃ (марки "Ч" — содержание B₂O₃ 99.5%), Eu₂O₃ (марка ЕвО-Ж-99.99%). Исходные компоненты перемешивали в течение 1 h для образования однородной смеси. Полученную смесь прессовали в таблетки объемом 100-150 mm³ и отжигали в печи ПВК-1.4-8 с заданной программой нагрева при 1350°С на воздухе в течение 2 h при атмосферном давлении. При снятии спектров для возбуждения фотолюминесценции использовали азотный лазер ИЛГИ-503 с длиной волны $\lambda_{ex} = 337.1$ nm. Излучение образцов подавалось через волоконный световод и монохроматор ЛМ-3 на фотоэлектронный умножитель ФЭУ 39-А. Сигнал с ФЭУ регистрировали в автоматическом режиме с шагом изменения длины волны $\lambda = 1 \, \mathrm{nm}$ осциллографом Tektronix NDS 2014 с последующей обработкой данных персональным компьютером, с помощью которого по полученным спектрам фотолюминесценции рассчитывались координаты цветности Х, У по методике [7]. Во всех составах люминофоров содержани Eu составляло 3 mol.% при котором обеспечивается максимальная интенсивность фотолюминесценции в соответствии с данными [8]. Аппроксимация спектров фотолюминесценции производилась с помощью пакета программ Systat12 путем разбиения спектров на гауссовы компоненты с дальнейшим вычитанием полосы, лежащей на удвоенной длине волны излучения лазера — 674.2 nm.

Всего было синтезировано 89 составов системы с общей формулой $(2\text{CaO} \cdot m(\text{Al}_2\text{O}_3) \cdot \text{SiO}_2 \cdot (\text{B}_2\text{O}_3)_x)$: Еи $(m - \text{молярная доля содержания Al}_2\text{O}_3$ в составе; $x - \text{весовой процент содержания в составе B}_2\text{O}_3)$, обладающих различными цветами свечения. Все люминофоры при наблюдении под микроскопом МБС-2 представляли

Таблица	1.	Параметры	спек	тров	И	координаты
цветности	фс	толюминесцен	ции	соста	вов	системы
$(2CaO \cdot m(A))$	$l_2O_3)$	\cdot SiO ₂ \cdot (B ₂ O ₃).	() : Eu	белого	цвет	а свечения

N₂	CaO	Al ₂ O ₃	SiO ₂	B_2O_3 wt.%	Цветовые координаты		$\lambda_m,$ nm	Δλ _{0.5} , nm
					X	Y		
1	2	0.4	1	6	0.296	0.319	453	241
2	2	0.2	1	6	0.286	0.357	534	204
3	2	0.2	1	1	0.303	0.364	528	211
4	2	0.2	1	0	0.303	0.363	527	215

Таблица 2. Параметры спектров и координаты цветности фотолюминесценции составов системы $(2CaO \cdot m(Al_2O_3) \cdot SiO_2 \cdot (B_2O_3)_x)$: Еи зеленого цвета свечения

N₂	CaO	Al ₂ O ₃	SiO ₂	B ₂ O ₃ wt.%	Цветовые координаты		$\lambda_m,$ nm	Δλ _{0.5} , nm
					X	Y		
1	2	0.1	1	6	0.255	0,363	501	157
2	2	0.1	1	2	0.252	0.405	515	134
3	2	0.1	1	1	0.229	0.367	496	136
4	2	0.1	1	0	0.285	0.511	523	115

Таблица 3. Параметры спектров и координаты цветности фотолюминесценции составов системы $(2\text{CaO} \cdot m(\text{Al}_2\text{O}_3) \cdot \text{SiO}_2 \cdot (B_2\text{O}_3)_x)$: Еи желтого цвета свечения

N₂	CaO	Al ₂ O ₃	SiO ₂	B_2O_3 wt %	Цветовые координаты		$\lambda_m,$ nm	Δλ _{0.5} , nm
					X	Y		
1	2	0.05	1	1	0.532	0,46	607	231
2	2	0.05	1	0	0.489	0.472	604	250
3	2	0	1	0	0.661	0.279	658	30

собой поликристаллические образования однородного цвета свечения.

Параметры и спектры фотолюминесценции составов, наиболее близких по цветам свечения к белому, зеленому и желтому цветам, представлены в табл. 1, 2, 3 и рис. 1, 2, 3 соответственно.

Анализ приведенных в табл. 1-3 и на рис. 1-3 данных показывает, что основное влияние на изменение цвета свечения оказывает содержание в составе Al_2O_3 . Добавление B_2O_3 существенно не влияло на спектры фотолюминесценции, однако изменением его количества в составах люминофоров x от 0 до 6 wt.% можно изменять форму спектров, корректируя, таким образом, координаты цветности. В частности, для состава 1 из табл. 1 концентрация B_2O_3 подобрана так, что координаты цветности этого состава соответствуют значениям

Рис. 1. Спектры фотолюминесценции составов 1-4 системы (2CaO · $m(Al_2O_3) \cdot SiO_2 \cdot (B_2O_3)_x)$: Еи белого цвета свечения ($\lambda_{ex} = 337.1 \text{ nm}$). Обозначения составов те же, что в табл. 1.

Рис. 2. Спектры фотолюминесценции составов 1-4 системы (2CaO \cdot 0.1(Al₂O₃) \cdot SiO₂ \cdot (B₂O₃)_x) : Еи зеленого цвета свечения ($\lambda_{ex} = 337.1 \text{ nm}$). Обозначения составов те же, что в табл. 2.

Рис. 3. Спектры фотолюминесценции составов 1-3 системы $(2\text{CaO} \cdot m(\text{Al}_2\text{O}_3) \cdot \text{SiO}_2 \cdot (B_2\text{O}_3)_x)$: Еи желтого цвета свечения. $(\lambda_{\text{ex}} = 337.1 \text{ nm})$. Состав $3 - (2\text{CaO} \cdot \text{SiO}_2)$ — красного цвета свечения. Обозначения те же, что в табл. 3.

Журнал технической физики, 2012, том 82, вып. 1

координат белого цвета свечения в цветовых системах МКО и близки к координатам цветности белого цвета систем EBU (X = 0.313, Y = 0.329) и NTSC (X = 0.31, Y = 0.316).

Уменьшение содержания оксида алюминия в составе до величины m = 0.1 ведет к уменьшению полуширины спектра люминесценции $\Delta\lambda_{0.5}$ (по уровню 0.5 от интенсивности люминесценции в максимуме спектра с длиной волны λ_m) в результате чего люминофор имеет зеленый цвет свечения (табл. 2, рис. 2).

Необходимо отметить, что для зеленых люминофоров введение оксида бора способствует увеличению интенсивности фотолюминесценции, а также небольшому увеличению полуширины спектра. Значения координат цветности исследованных "зеленых" люминофоров соответствует положению зеленого цвета систем цветовой сигнализации по МКО и близки к координатам цветности зеленого цвета системы EBU (X = 0.29, Y = 0.66).

Дальнейшее уменьшение величины содержания Al_2O_3 до значения m = 0.05 приводит к смещению спектра фотолюминесценции в длинноволновую область, в результате чего составы дают желтый цвет свечения (табл. 3, рис. 3). Как следует из формы спектров (рис. 3), содеражние оксида бора не оказывает существенного влияния на фотолюминесцентные свойства составов. В предельном случае при m = 0 состав (2CaO · SiO₂) : Еи дает красное свечение. Координаты цветности исследованных желтых люминофоров близки к соответствующим координатам поля желтого цвета свечения систем цветовой сигнализации по МКО.

Полученные результаты можно объяснить следующим образом. Широкие полосы спектров излучения полученных составов обусловлены замещением кальция в узлах кристаллической решетки как ионами Eu²⁺ (при этом процесс замещения протекает путем $\operatorname{Eu}^{2+} \to \operatorname{Ca}^{2+}$), так и ионами Eu^{3+} (процесс $2Eu^{3+} \rightarrow 3CA^{2+}$) [9,10]. Помимо этого, кальций может находиться в нескольких различных узлах решетки, из-за чего окружение ионов Еи для каждого узла будет различаться. Поэтому наличие в составе двух типов ионов активатора, разных позиций замещения ионами Еи в решетке, а также совокупность всех возможных внутрицентровых переходов в ионе $\operatorname{Eu}^{3+}{}^{5}\mathrm{D}_{0} \rightarrow^{7}\mathrm{F}_{i}$ (i = 0, 1, 2, 3, 4), дающих люминесценцию в оранжево-красной области, и в ионе Eu^{2+} 4 $f^65d \rightarrow 4f^7$, дающих люминесценцию в синей области [5], ведет к образованию широкополосного спектра излучения. С одной стороны, наличие в системе $(2CaO \cdot m(Al_2O_3) \cdot SiO_2 \cdot (B_2O_3)_x)$: Еи двух молярных долей оксида кальция должно обеспечивать большее количество вакансий в решетке кристалла для встраивания ионов Еu. При синтезе люминофоров на воздухе должно происходить окисление ионов европия до значения Eu³⁺, который преимущественно дает красное свечение, однако вид спектров фотолюминесценции подтверждает наличие в составе также и ионов Eu²⁺, которые дают коротковолновое излучение. Согласно выводам работ [11,12], концентрация ионов Eu²⁺

Рис. 4. Зависимость координат цветности составов системы $(CaO \cdot Al_2O_3 \cdot SiO_2) : Eu$ от концентрации Al_2O_3 ($\lambda_{ex} = 337.1 \text{ nm}$) 1 — (2CaO · SiO₂) : Eu; 2 — (2CaO · 0.05(Al_2O_3) · SiO_2) : Eu; 3 — (2CaO 0.1(Al_2O_3) SiO_2) : Eu; 4 — (2CaO 0.4(Al_2O_3) SiO_2) : Eu; 5 — (CaO Al_2O_3 SiO_2) : Eu [5].

в восстановительной атмосфере увеличивается по мере роста температуры отжига за счет процесса перехода ионов Eu³⁺ в Eu²⁺. В окислительной атмосфере подобный процесс протекает при значительно более высоких температурах. В нашем случае высокая температура синтеза ($T = 1350^{\circ}$ C) запускает механизм преобразования ионов $\operatorname{Eu}^{3+} \to \operatorname{Eu}^{2+}$, однако наличие в составе Eu³⁺ свидетельствует о его неполном завершении, связанном с различными факторами. Такими факторами могут служить термодинамическая устойчивость состояний Eu³⁺ и Eu²⁺, находящихся в разных узлах кристаллической решетки, время протекания реакции (в данном случае 2h), а также объем образца. В то же время подобное промежуточное состояние в значительной степени способствует получению широкополосного излучения с различными вариациями координат цветности.

Введение в состав бора, жесткая объемная решетка которого в виде ВО₄, согласно [11], стабилизирует двухвалентные редкоземельные ионы в окислительной атмосфере, снижая тем самым температуру протекания процесса $Eu^{3+} \rightarrow Eu^{2+}$. Однако в нашем случае влияние подобной добавки замечено только в составах зеленого цвета свечения (рис. 2).

Как указывалось выше, цвет свечения люминофоров системы $(2\text{CaO} \cdot m(\text{Al}_2\text{O}_3) \cdot \text{SiO}_2 \cdot (\text{B}_2\text{O}_3)_x)$: Еи существенным образом зависит от значения концентрации m Al₂O₃. При m = 0 люминофор имеет красный

цвет свечения, по мере роста концентрации до значения m = 0.05 цвет свечения переходит в желтую область, затем при достижении m = 0.1 — в зеленую, далее при увеличении *m* до 0.4 — в белую и далее, принимая во внимание данные [5] для состава $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Eu, где m = 1, - в синюю (рис. 4). Эти результаты можно объяснить перестройкой кристаллической решетки люминофоров при введении Al2O3 и при увеличении его концентрации, сопровождающейся ростом относительно составов люминофоров с меньшим содержанием Al₂O₃ числа узлов кристаллической решетки, занятых положительным ионами Si^{4+} и Al^{3+} , и соответствующим уменьшением числа узлов решетки, занятых ионами Ca $^{2+}.$ C учетом того, что ионные радиусы (Si — 0.39 Å, Al — 0.57 Å) значительно отличаются от ионных радиусов Eu^{2+} (1.24 Å) и Eu^{3+} (0.97 Å), возрастает вероятность замещения двухвалентных ионов Ca²⁺ двухвалентными ионами Eu^{2+} (процесс $Eu^{2+} \rightarrow Ca^{2+}$) по сравнению с процессом $2Eu^{3+} \rightarrow 3Ca^{2+}$, требующим в 1.5 раза большее количество ионов Ca^{2+} , что приводит к смещению спектров фотолюминесценции в более коротковолновую область.

С учетом ранее полученных результатов [5] фотолюминофоры в системе $(CaO \cdot Al_2O_3 \cdot SiO_2)$: Еи способны обеспечить получение всех основных цветов для систем цветовой сигнализации по МКО и телевизионных стандартов EBU и NTSC в зависимости от состава, условий синтеза и отжига. Исследованные люминофоры представляют значительный интерес и могут найти широкое применение при разработке светодиодных излучателей белого цвета свечения, средств отображения информации и систем цветовой сигнализации.

Список литературы

- [1] Nakamura S., Fasol G. The blue laser diodes. Berlin; Springer, 1997. P. 216–219.
- [2] Haase M.A., Xie J. et all. // Appl. Phys. Lett. 2010. Vol. 96.
 P. 231 116.
- [3] *Tang Y.S., Hu S.F., Ke W.C.* et al. // Appl. Phys. Lett. 2008. Vol. 93. P. 131 114.
- [4] Бачериков Ю.Ю., Кицюк Н.В. // ЖТФ. 2005. Т. 75. Вып. 5. С. 129–130.
- [5] Гурин Н.Т., Паксютов К.В., Терентьев М.А., Широков А.В. // Письма в ЖТФ. 2009. Т. 35. Вып. 15. С. 41-49.
- [6] Гурин Н.Т., Паксютов К.В., Терентьев М.А., Широков А.В. // Письма в ЖТФ. 2008. Вып. 21. С. 1–6.
- [7] Мешков В.В., Матвеев А.Б. Основы светотехники. В 2-х частях. Ч. 2. М.: Энергоатомиздат, 1989. 432 с.
- [8] Гурин Н.Т., Паксютов К.В., Терентьев М.А., Широков А.В. // ЖТФ. 2009. Т. 79. Вып. 9. С. 152–154.
- [9] Baginskiy I., Liu R.S. // J. Electrochem. Soc. 2009. Vol. 156. N.G29–G32.
- [10] Hao J., Gao J. // Appl. Phys. Lett. 2003. Vol. 82. P. 17.
- [11] Hao J., Gao J. // Appl. Phys. Lett. 2004. Vol. 85. P. 3720.
- [12] Zeng Q, Tanno H, Egoshi K, Tanamachi N, Zhang S. // Appl. Phys. Lett. 2006. Vol. 88. P. 051 906.