05:12

Размеры областей когерентного рассеяния рентгеновского излучения в тонких пленках SmS и их визуализация

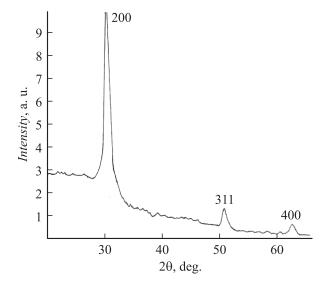
© Н.В. Шаренкова, В.В. Каминский, С.Н. Петров

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: Vladimir.Kaminski@mail.ioffe.ru

(Поступило в Редакцию 16 декабря 2010 г. В окончательной редакции 18 февраля 2011 г.)

На тонкой поликристаллической пленке SmS из рентгеновских дифрактограмм (θ - 2θ -сканирование, ДРОН-2, Си K_α -излучение) по формуле Селякова—Шеррера с учетом влияния микронапряжений определен характерный размер областей когерентного рассеяния рентгеновского излучения ($250 \pm 20 \, \text{Å}$). С помощью электронного микроскопа получено изображение поверхности этой же пленки, на котором четко видны области с характерными размерами $240 \, \text{Å}$. Сделан вывод, что визуально наблюдаются области когерентного рассеяния рентгеновского излучения.

Почти все специфические физические свойства полупроводника зависят от степени его дефектности. Не является исключением и сульфид самария (SmS). При мозаичном строении материала за меру степени дефектности полупроводникового материала может быть принят характерный размер областей когерентного рассеяния рентгеновского излучения (ОКР). Это размер областей, в которых сохраняется трехмерная периодичность в расположении атомов. Именно в этой области происходит когерентное рассеяние, которое позволяет получить дифракционное отражение рентгеновских лучей от атомных плоскостей [1].


Как показали проведенные нами исследования, физические свойства SmS действительно зависят от величины ОКР в материале. Это подтвердили исследования процессов диффузиии [2,3], электропереноса [4,5], а также фазовых переходов полупроводник-металл в SmS [6]. Неучет величины ОКР при паспортизации образцов приводит к получению различных результатов при измерении коэффициентов диффузии, удельного электросопротивления, концентрации носителей заряда, критического давления фазового перехода и т.д. на образцах номинального одинакового состава и с одинаковым значением параметра кристаллической решетки (a). В данном случае это относится к образцам SmS, хотя, по-видимому, будет справедливо и для образцов других полупроводниковых материалов. Такая важная роль величины ОКР для характеризации свойств полупроводника приводит к необходимости более точного ее измерения или, по крайней мере, подтверждения правильности получаемых результатов. Наиболее естественным путем для решения этой задачи является оценка учета факторов, влияющих на величину расчетных значений ОКР, и визуализация измеряемых объектов. Это было сделано в настоящей работе.

Измерения проводились на тонких поликристаллических пленках SmS, так как наиболее сильно проявляется зависимость электрических свойств от размеров ОКР (L) именно в них. Это связано со степенью

дефектности (V), которая в пленках максимальна, и может быть оценена по формуле $V=1-(L-2a)^3/L^3$, т. е. напрямую зависит от L [6]. Величина областей когерентного рассеяния в пленках составляет $100-450\,\text{Å}$. Это меньше, чем в поли- и монокристаллах $(700-2500\,\text{Å})$, и поэтому, согласно формуле Селякова—Шеррера (1), измерения должны быть точнее.

Для эксперимента были изготовлены тонкие поликристаллические пленки SmS, напыленные на стеклянные подложки методом взрывного испарения порошка SmS в вакууме [5]. Толщина пленок составляла $\sim 0.5\,\mu\text{m}$, параметр кристаллической решетки SmS в пленках составлял $5.93\pm0.01\,\text{Å}$.

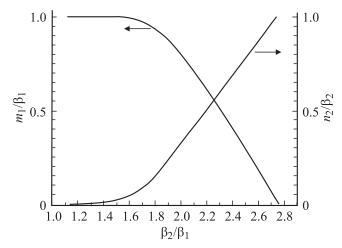
Структурные исследования проводились на дифрактометре ДРОН-2 (θ –2 θ -сканирование, Си K_{α} -излучение). На рис. 1 представлена дифрактограмма образца № 2 (см. таблицу). Она типичная для всех исследованных образцов. Близкие значения "полуширин" пиков 200 и 311 говорят об изометричности ОКР в направлениях

Рис. 1. Дифрактограмма поликристаллической пленки SmS.

Параметры тонких поликристаллических пленок SmS

№ образца	β_2/β_1	$L', \mathring{\mathrm{A}}$	L, Å	$\varepsilon = \Delta a/a$
1	1.43	98	98	$\sim 10^{-4}$
2	1.19	115	115	$\sim 10^{-4}$
3	1.97	92	112	$\sim 2 \cdot 10^{-4}$
4	1.95	180	212	$\sim 2\cdot 10^{-3}$

нормалей к этим плоскостям. Об однофазности образцов можно судить по отсутствию посторонних пиков на дифрактограмме.


Величины ОКР и микронапряжений (ε) определялись методом аппроксимации [7]. Измерялись "полуширины" дифракционных отражений второго и четвертого порядков от плоскостей (100). Инструментальное расширение определялось по эталону, в качестве которого был использован мелкодисперсный порошок кремния. Аппроксимирующими функциями для наших образцов были использованы $N(x)=1/(1+\delta x^2)^2$ — для линии 400 и $M(x)=1/1+\gamma x^2$ — для линии 200. Величины физического расширения линии 200 — β_1 и линии 400 — β_2 , определенные из экспериментальных "полуширин", использовались в формулах для расчета ОКР и микронапряжений:

$$L = rac{\lambda}{eta_1\cos heta_{200}},$$
 где $\lambda_{\mathrm{Cu}\,K_a} = 1.542\,\mathrm{\mathring{A}},$ (1)

$$\varepsilon = \frac{\Delta a}{a} = \frac{\beta}{4 \operatorname{tg} \theta_{400}}.$$
 (2)

Так как наличие микронапряжений в пленках может повлиять на величину β_1 , и тем самым внести существенную погрешность в искомую величину L, в работе сделаны расчеты, позволяющие учитывать это влияние.

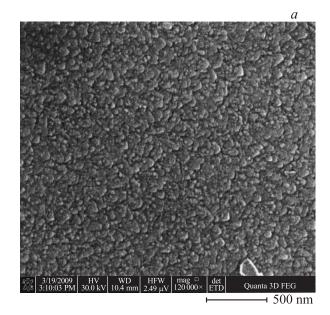
Для разделения эффектов микронапряжений (n) и дисперсности блоков (m) были построены номограм-

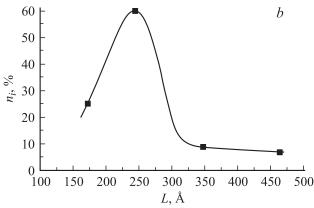
Рис. 2. Номограммы для разделения эффектов микронапряжений и дисперсности блоков в полупроводниковых образдах SmS (излучение $Cu\ K_{\alpha}$, линии 200 и 400).

мы (рис. 2), по которым из экспериментального значения β_2/β_1 можно определить вклад каждого эффекта в ширину β_1 . Расчет номограмм выполнен для полупроводникового SmS ($a=5.880-5.970\,\text{Å}$) путем аппроксимации выражений для истинного физического расширения для двух порядков отражений [7]:

$$\beta_{1,2} = \frac{nm}{\int N(x)M(x)dx},\tag{3}$$

где N(x) — функция искажения решетки, M(x) — функция дисперсности блоков (вид функций см. выше).


Из полученных, согласно соотношениям из [7], зависимостей $m_1\beta_1=f(\beta_2/\beta_1)$ и $n_2/\beta_2=f(\beta_2/\beta_1)$, а также зная из эксперимента β_2/β_1 , можно определить m_1 и n_2 , а затем, подставив эти значения в формулы (1) и (2) вместо β_1 и β_2 , соответственно, получить истинные значения L и ε .


В таблице представлены результаты расчетов L и ε для четырех поликристаллических пленок SmS. Как видно из рис. 2 и таблицы, при значениях β_2/β_1 меньше 1.6, вклад эффекта микронапряжений в β_1 практически отсутствует. Значения L' вычислены без учета влияния микронапряжения на величину β_1, L — с учетом этого влияния. Оценка влияния микронапряжений на величину ОКР в исследованных пленках SmS, показала, что их вклад не превышает 20% (см. таблицу, графы L' и L).

Для одной из пленок методом электронной микроскопии высокого разрешения с полевой эмиссией во вторичных электронах на растровом двулучевом электронно-ионном микроскопе Quanta 200 3D FEG (ускоряющее напряжение $30\,\mathrm{kV}$, ток пучка $53\,\mathrm{pA}$, масштаб на снимке) было получено изображение ее поверхности (рис. 3,a). Видно, что пленка имеет мозаичное строение и, как показала статистическая обработка фотографии, наиболее часто встречающийся блок мозаики представляет собой зерно с диаметром $240\,\mathrm{\mathring{A}}$ (рис. 3,b).

Полученная величина совпала по размерам с величиной ОКР, измеренной на этой же пленке рентгеновским методом по формуле Селякова-Шеррера. Глубина проникновения рентгеновского излучения в SmS превосходит толщину пленки: при $2\Theta = 30\deg$ она составляет около $1.5\,\mu{\rm m}$. Так как рентгеновские данные говорят о изометричности ОКР, мы может считать, что данные электронного микроскопа, полученные с приповерхностного слоя пленки (глубина проникновения менее $0.01 \, \mu \text{m}$) и измеренные в латеральном направлении, сопоставимы с рентгеновскими данными, полученными в нормальном направлении. Таким образом, совпадение размеров измеренных объектов позволяют считать, что мы имеем дело с одним и тем же объектом структурные зерна на фотографии представляют собой изображения ОКР материала пленки SmS.

Следует отметить, что кластерная структура с размером ячеек 200—300 Å уже наблюдалась ранее в работе [8] методом трансмиссионной электронной микроскопии в пленке SmS в металлической фазе. По-видимому

Рис. 3. Изображение поверхности тонкой пленки SmS, полученное во вторичных электронах методом сканирующей электронной микроскопии высокого разрешения с полевой эмиссией, увеличение $120\,000~(a)$; распределение количества частиц по размерам (b).

эти ячейки идентичны нашим ОКР. Основанием для такого вывода может служить тот факт, что в работе [6] мы наблюдали в металлической фазе SmS, полученной полировкой поликристаллов SmS, величины ОКР также порядка $200-300\,\mathrm{\mathring{A}}$.

Таким образом, в настоящей работе продемонстрирована возможность визуализации ОКР. Она показала, что определение величин ОКР по формуле Селякова—Шеррера в тонких поликристаллических пленках SmS является достаточно точным. И при оценке величин параметров диффузии, электропереноса и фазовых переходов в каждом конкретном образце можно опираться на эти величины.

Авторы выражают благодарность А.О. Лебедеву и Ю.В. Марковой за помощь в работе.

Работа выполнена при поддержке ООО "Эс эм Эстензо" (Санкт-Петербург).

Список литературы

- [1] Современная кристаллография / Под ред. Б.К. Вайнштейна. Т. 1. М.: Наука, 1979. 384 с.
- [2] Голубков А.В., Дидик В.А., Каминский В.В., Скорятина Е.А., Шаренкова Н.В. // ФТТ. 2005. Т. 47. Вып. 7. С. 1192—1194.
- [3] Дидик В.А., Каминский В.В., Скорятина Е.А., Усачева В.П., Шаренкова Н.В., Голубков А.В. // Письма в ЖТФ. 2006. Т. 32. Вып. 13. С. 1–5.
- [4] Шаренкова Н.В., Каминский В.В., Романова М.В., Васильев Л.Н., Каменская Г.А. // ФТТ. 2008. Т. 50. Вып. 7. С. 1158—1161.
- [5] Каминский В.В., Курапов Ю.П., Васильев Л.Н., Романова М.В., Шаренкова Н.В. // ФТТ. 1996. Т. 38. Вып. 3. С. 779—785.
- [6] Шаренкова Н.В., Каминский В.В., Голубков А.В., Васильев Л.Н., Каменская Г.А. // ФТТ. 2005. Т. 47. Вып. 4. С. 598–602.
- [7] Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронографический анализ. М.: Металлургия, 1970. 368 с.
- [8] Рябов А.В., Рувимов С.С., Сорокин Л.М., Смирнов Б.И., Голубков А.В. // ФТТ, 1979. Т. 21. Вып. 7. С. 1986—1989.