01;03;05 Теплота плавления для наночастицы

© М.Н. Магомедов

Институт проблем геотермии Дагестанского научного центра РАН, 367030 Махачкала, Россия e-mail: mahmag@dinet.ru

(Поступило в Редакцию 12 ноября 2010 г. В окончательной редакции 24 января 2011 г.)

Исходя из модели нанокристалла в виде прямоугольного параллелепипеда с варьируемой формой поверхности, получены выражения для следующих зависимостей: температур плавления (T_m) и начала кристаллизации $(T_N < T_m)$, удельных (на атом) скачков энтропии (Δs), скрытой теплоты ($\Delta h = T_m \Delta s$) и объема (Δv) для фазового перехода кристалл-жидкость. Изучена зависимость данных функций как от числа атомов (N), так и от формы наночастицы. Расчеты, проведенные для наночастиц меди, показали хорошее согласие с результатами, полученными в численных экспериментах. Показано, что при определенном размере N_0 функции Δs , Δh и Δv становятся равными нулю, и исчезает гистерезис между температурой плавления и температурой начала кристаллизации: $T_N(N_0) = T_m(N_0)$. В таком кластере физическое различие фаз исчезает. Для наномеди этот размер лежит в интервале $N_0 = 49-309$ и увеличивается при отклонении формы наночастицы от наиболее энергетически устойчивой.

Введение

Вопрос о зависимости параметров фазового перехода кристалл-жидкость (ФПК-Ж) от размера наночастицы (нанокристалла или нанокапли) со свободной поверхностью изучается давно. И если размерная зависимость температуры ФПК-Ж (Т_m) изучена довольно подробно как экспериментально, так и теоретически, то размерная зависимость скрытой теплоты ФПК-Ж изучена сравнительно мало. И хотя экспериментально установлено, что при уменьшении числа атомов (N) в наночастице удельная (на атом) скрытая теплота $\Phi\Pi K - \mathcal{K} (\Delta h)$ уменьшается [1], вопрос о виде функциональной зависимости $\Delta h(N)$ до сих пор не решен. Например, если для температуры ФПК-Ж хорошо выполняется зависимость $T_m(N)/T_m(N=\infty) \cong 1 - \text{const}/N^{1/3}$, то для функции $\Delta h(N)$ обнаружена более сложная зависимость [2], причем функция $\Delta h(N)$ убывает с уменьшением N значительно сильнее, чем функция $T_m(N)$. В связи с этим неясно — возможно ли, чтобы при $T_m(N) > 0$ величина $\Delta h(N)$ стала отрицательной? В данной работе предложен один из вариантов получения функциональной зависимости $\Delta h(N)$, а также рассмотрен вопрос о роли формы нанокристалла в изменении зависимости $\Delta h(N)$.

1. Метод расчета

Рассмотрим конденсированную систему из N одинаковых атомов при температуре T и давлении P. Изменение удельной (на атом) свободной энергии системы при вариации температуры, удельного объема (v = V/N), числа атомов и площади поверхности (Σ) равно

$$d\left(\frac{F}{N}\right) = -s_{\rm in}dT - P\,dv + \left(\frac{\mu}{N}\right)dN + d\left(\frac{\sigma\Sigma}{N}\right).$$

Здесь σ — удельная (на единицу площади) поверхностная свободная энергия, μ и s_{in} — химический потенциал

и удельная (на атом) энтропия при неизменной удельной энергии поверхности

$$s_{\rm in}(T, v, N) = -\left[\frac{\partial(F/N)}{\partial T}\right]_{v, N, (\sigma \Sigma/N)}$$

Удельная энтропия всей ограниченной поверхностью Σ системы определится выражением

$$s = -\left[\frac{\partial(F/N)}{\partial T}\right]_{v,N}$$
$$= s_{\rm in} - \left\{ \left(\frac{\Sigma}{N}\right) \left(\frac{\partial\sigma}{\partial T}\right)_{v,N} + \sigma \left[\frac{\partial(\Sigma/N)}{\partial T}\right]_{v,N} \right\}.$$
(1)

Второй член в (1) связан с изомерно-изохорическим изменением удельной поверхностной свободной энергии с температурой. Третий член в (1) определяется температурным изменением площади поверхности при постоянных значениях удельного объема и числа атомов. А так как при постоянных значениях v и N площадь поверхности можно изменить только деформацией формы, то третье слагаемое в (1) определяется изомерноизохорическим изменением формы поверхности с температурой. Очевидно, что для удельной площади поверхности выполняется $\Sigma/N \sim 1/N^{1/3}$. Поэтому в "термодинамическом пределе", т.е. при $N \to \infty, V \to \infty$ и $V/N = {
m const}$ имеем $\Sigma/N \to 0$, и оба последних слагаемых в (1) исчезают. В этом случае остается только "объемный" член s_{in}, который, однако, зависит от фононного спектра колебаний. Поэтому при конечном размере кристалла величина s_{in} зависит от размера (а потому и от формы) нанокристалла.

Так как (1) справедливо как для твердой, так и для жидкой фаз, то из формулы (1) можно получить

выражение для скачка энтропии при ФПК-Ж в виде

$$\Delta s = \Delta s_{\rm in} - \Delta \left\{ \left(\frac{\Sigma}{N} \right) \left(\frac{\partial \sigma}{\partial T} \right)_{v,N} + \sigma \left[\frac{\partial (\Sigma/N)}{\partial T} \right]_{v,N} \right\}$$
$$= \Delta s_{\rm in} - \Delta_{\sigma} - \Delta_f, \qquad (2)$$

где функция ΔX обозначает разность значений X для изучаемых фаз $\Delta X = X(l) - X(s)$.

В (2) величина Δs_{in} — изменение удельной энтропии системы при ФПК-Ж без учета температурного изменения энергии поверхности. Используя модель плавления Френкеля—Мотта [3,4], т.е. предполагая, что жидкость (*l*), как и кристалл (*s*), представляет собой систему гармонических осцилляторов, для Δs_{in} можно получить соотношение $\Delta s_{in}/3k_b = \ln[\Theta(s)/\Theta(l)]$, где Θ — характеристическая температура колебаний, k_b постоянная Больцмана.

Для определения двух последних членов в (2) и размерной зависимости функции О рассмотрим, как и в работах [5–7], нанокристалл со свободной поверхностью, который имеет вид прямоугольного параллелепипеда с квадратным основанием, ограненный гранями (100). Величина $f = N_{ps}/N_{po}$ — параметр формы, который определяется отношением числа атомов на боковом ребре N_{ps} к числу атомов на ребре квадратного основания N_{po} параллелепипеда. Для нанокристалла стержневидной формы f > 1, для куба f = 1, а для пластинчатой формы f < 1. Число атомов в таком нанокристалле, равное $N = f N_{po}^3 / \alpha$, изменяется в пределах $2^3/\alpha \le N \le \infty$, где $\alpha = \pi/(6k_p)$ — параметр структуры, *k*_{*p*} — коэффициент упаковки структуры. Объем, площадь поверхности и их отношение для прямоугольного параллелепипеда равны [5-7]

$$V = N_{po}^{3} f c^{3} = N \alpha c^{3} = N v,$$

$$\Sigma = 6c^{2} \alpha_{s} (N \alpha)^{2/3} Z_{s}(f) = 6\alpha_{s} V^{2/3} Z_{s}(f),$$

$$\frac{\Sigma}{N} = 6c^{2} \alpha_{s} \left(\frac{\alpha^{2}}{N}\right)^{1/3} Z_{s}(f) = 6c^{2} \alpha_{s} (1 - k_{n}^{*}) \cong 6v^{2/3} (1 - k_{n}^{*}).$$
(3)

Здесь c(N, f) — среднее (по всему объему нанокристалла) расстояние между центрами ближайших атомов, $\alpha_s \cong \alpha^{2/3}$ — коэффициент, учитывающий плотность упаковки атомов на грани (100), т.е. в поверхностном слое нанокристалла,

$$k_n(N, f)^* = \frac{k_n(N, f)}{k_n(N = \infty)} = 1 - Z_s(f) \left(\frac{\alpha^2}{N}\right)^{1/3}, \quad (4)$$

где $k_n(N, f)$ — среднее (по всему нанокристаллу) значение первого координационного числа, $Z_s(f) = (1+2f)/(3f^{2/3})$ — функция формы, которая достигает минимума, равного единице при f = 1, т.е. для наиболее энергетически устойчивой кубической формы параллелепипеда. Для пластинчатых (f < 1) или стержневидных (f > 1) форм поверхности имеем $Z_s(f \neq 1) > 1$. Используя для нанокристалла с варьируемой формой поверхности модель колебательного спектра Эйнштейна и приближение взаимодействия "только ближайших соседей", для изомерно-изохорной производной удельной поверхностной энергии по температуре и для температуры Эйнштейна (Θ), можно получить [5,7]

$$\begin{pmatrix} \frac{\partial \sigma}{\partial T} \end{pmatrix}_{v,N} = -\left[\frac{\sigma'_{\infty}}{k_n(N,f)^*} \right] F_E(y) < 0,$$

$$F_E(y) = \frac{y^2 \exp(y)}{[\exp(y) - 1]^2}, \quad y = \frac{\Theta(N,f)}{T},$$

$$\sigma'_{\infty} = -\lim_{T \to \infty} \left(\frac{\partial \sigma}{\partial T} \right)_{v,N=\infty} \cong \frac{k_b}{4v^{2/3}},$$

$$\Theta(k_n^*) = \Theta(\infty) \left[\frac{\Theta(k_n^*)}{\Theta(\infty)} \right] \cong \Theta(\infty) (k_n^*)^{1/2}.$$

$$(5)$$

Учитывая, что $\Delta s_{in}(N = \infty) = 3k_b \ln[\Theta(s)/\Theta(l)]_{N=\infty} = \Delta s_m$ — скачок удельной энтропии при ФПК-Ж в макрокристалле, из (5) легко получить

$$\frac{\Delta s_{\rm in}(N,f)}{3k_b} = \ln\left[\frac{\Theta(s)}{\Theta(l)}\right] = \frac{\Delta s_m}{3k_b} + 0.5\ln\left[\frac{k_n(s)^*}{k_n(l)^*}\right].$$
 (6)

Используя формулы (2)-(5), можно получить выражение для функции Δ_{σ} в виде

$$\Delta_{\sigma} = \Delta \left[\left(\frac{\Sigma}{N} \right) \left(\frac{\partial \sigma}{\partial T} \right)_{v,N} \right] = - \left(\frac{3}{2} \right) k_b \Delta \left[F_E(y_m) \left(\frac{1}{k_n^*} - 1 \right) \right].$$
(7)

Для случая высоких температур (т.е. при $y = \Theta(N, f)/T \ll 1$) имеем $F_E(T \gg \Theta) = 1$, и тогда выражение (7) упрощается к виду $\Delta_{\sigma} = -(3/2)k_b\Delta[1/k_n^*]$, что для $\Phi\Pi$ К-Ж дает

$$\Delta_{\sigma} = \left(\frac{3}{2}\right) k_b \left[\frac{1}{k_n(s)^*} - \frac{1}{k_n(l)^*}\right],\tag{8}$$

где символы s и l обозначают твердую и жидкую фазы соответственно.

Функция $\Delta_{\sigma}(N, f)$ всегда положительна, ибо форма нанокристалла всегда имеет ребра и вершины, где координационное число меньше, чем на плоской грани. С уменьшением N величины $1/k_n(s)^*$ и $1/k_n(l)^*$ увеличиваются, а так как при этом растет доля атомов, находящихся на ребрах и в вершинах нанокристалла, то функция $\Delta_{\sigma}(N, f)$ увеличивается с уменьшением N тем сильнее, чем заметнее форма нанокристалла отклонена от наиболее компактной кубической формы параллелепипеда.

Рассмотрим третий член в (2), который обусловлен изомерно-изохорическим изменением формы поверхности наночастицы с температурой. Так как форма нанокапли в изомерно-изохорическом процессе не меняется (это всегда сфера), то из (3) имеем

$$\Delta_{f} = \Delta \left\{ \sigma \left[\frac{\partial (\Sigma/N)}{\partial T} \right]_{v,N} \right\} = -\sigma(s) \left[\frac{\partial [\Sigma(s)/N]}{\partial T} \right]_{v,N}$$
$$= 6\sigma(s) \left[v(s)^{2/3} \right] \left[\frac{\partial k_{n}(s)^{*}}{\partial T} \right]_{v,N}.$$
(9)

Из (9) видно, чем больше температурный рост величины $k_n(s)^*$ для нанокристалла при температуре ФПК–Ж, тем больше величина Δ_f и тем меньше скачок удельной энтропии ФПК–Ж. Но для обычных простых веществ форма нанокристалла не изменяется при изомерноизохорическом нагреве, т.е. $\{\partial [k_n(s)^*]/\partial T\}_{v,N} = 0$. Поэтому из (2), (6) и (8) получим

$$\Delta s^* = \frac{\Delta s(N, f)}{\Delta s_m} = \frac{\Delta s_{\rm in} - \Delta_\sigma}{\Delta s_m}$$
$$= 1 - \left(\frac{3}{2}\right) \frac{k_b}{\Delta s_m} \left\{ \frac{1}{k_n(s)^*} - \frac{1}{k_n(l)^*} - \ln\left[\frac{k_n(s)^*}{k_l(s)^*}\right] \right\}.$$
(10)

Для того чтобы функция $\Delta s(N)$ уменьшалась со снижением числа атомов в наночастице должно выполняться неравенство

$$\left[\frac{1}{k_n(s)^*}\right] \left[1 - \frac{k_n(s)^*}{k_n(l)^*}\right] - \ln\left[\frac{k_n(s)^*}{k_n(l)^*}\right] \ge 0$$
или $\frac{k_n(s)^*}{k_n(l)^*} \le 1$ (11)

Если нанокапля всегда теоретически сферическая, то форма нанокристалла может быть различной. Из (10) и (11) видно, что чем больше форма плавящегося нанокристалла отклонена от наиболее энергетически устойчивой формы куба (или чем больше дендритизована форма поверхности у кристаллизующегося нанокристалла), тем меньше будет отношение $k_n(s)^*/k_n(l)^*$ и тем меньше будут как величина Δs , так и значение $\Delta h = T_m \Delta s$ удельная скрытая теплота ФПК-Ж. Здесь $T_m(N, f)$ температура плавления, для размерной зависимости которой было получено [6,7]

$$T_m^* = \frac{T_m(N, f)}{T_m(N = \infty)} \cong k_n(s)^* = 1 - \left[Z_s(f)\alpha^{2/3}\right]_s \left(\frac{1}{N}\right)^{1/3}.$$
(12)

Таким образом, для размерной зависимости удельной теплоты ФПК-Ж получим

$$\Delta h^* = \frac{\Delta h(N, f)}{\Delta h(N = \infty)} = \Delta s^* T_m^*$$
$$= k_n(s)^* \left\{ 1 - \left(\frac{3}{2}\right) \frac{k_b}{\Delta s_m} \left\{ \frac{1}{k_n(s)^*} - \frac{1}{k_n(l)^*} - \ln\left[\frac{k_n(s)^*}{k_n(l)^*}\right] \right\} \right\}.$$
(13)

Отметим, что здесь мы ограничиваемся рассмотрением наночастиц таких размеров, для которых применимо понятие сферической формы и для которых также справедливо термодинамическое описание состояния фазы.

Согласно уравнению Клапейрона-Клаузиуса, удельная теплота плавления и скачок удельного объема при

плавлении (Δv) связаны соотношением [3]

$$\Delta v = \left(\frac{dT_m}{dP}\right) \frac{\Delta h}{T_m} = \left[\frac{d\ln(T_m)}{dP}\right] \Delta h \quad \text{или}$$
$$\Delta v^* = \left[\frac{d\ln(T_m)}{dP}\right]^* \Delta h^*, \tag{14}$$

где, как и ранее, функция со звездочкой означает величину данной функции, нормированную на ее значение для макрокристалла: $X^* = X(N, f)/X(N = \infty)$.

Исходя из соотношения (12) можно получить

$$\left[\frac{d\ln(T_m)}{dP}\right]^* = 1 + \left\{\frac{d\ln[k_n(s)^*]}{dP}\right\} / \left\{\frac{d\ln[T_m(\infty)]}{dP}\right\}.$$
(15)

Если кристаллическая структура и форма поверхности нанокристалла не меняются с давлением, то второе слагаемое в (15) исчезает, и (14) упрощается к виду $\Delta v^* = \Delta h^*$.

Для температуры начала кристаллизации по аналогии с (12) можно принять

$$T_N^* = \frac{T_N(N, f)}{T_N(N = \infty)} \cong k_n(l)^* = 1 - [Z_s(f)\alpha^{2/3}]_L \left(\frac{1}{N}\right)^{1/3},$$
(16)

причем выполняется соотношение [7,8] $T_m(N = \infty) > T_N(N = \infty)$, а из (11) следует, что функция $T_N^*(N)$ должна уменьшаться с уменьшением N слабее, чем функция $T_m^*(N)$. Исходя из этого, следует, что при определенном размере N_x функции $T_N(N)$ и $T_m(N)$ должны пересечься: $T_N(N_x) = T_m(N_x)$, причем величина N_x будет зависеть от формы нанокристалла, т.е. от значения f.

2. Расчеты для наномеди

Используя размерную зависимость температуры плавления, полученную в [9] методом молекулярной динамики для ГЦК-меди ($k_n(N = \infty) = 12$, $k_p = 0.7405$, $\alpha = 0.7071$), и выражение (12), для величины функции формы было получено (см. рис. 1) $Z_s(f) = 2$. С другой стороны, так как нанокапля имеет наиболее компактную форму сферы для оценки зависимости $k_n(l)^*$, примем $Z_s(f) = 1$. Таким образом, для проверки обоснованности зависимостей (10) и (13) примем для температуры плавления нанокристалла и температуры начала кристаллизации нанокапли следующие зависимости, показанные на рис. 1 (две верхние линии):

$$T_m^* \cong k_n^* \cong 1 - 2 \times 0.7937 \left(\frac{1}{N}\right)^{1/3},$$

$$T_N^*(N) \cong k_n(l)^* \cong 1 - 0.7937 \left(\frac{1}{N}\right)^{1/3}.$$
 (17)

Скрытая теплота плавления и температура плавления макрокристалла меди равны [9] $\Delta h(N = \infty) = 13.02 \text{ kJ/mol и } T_m(N = \infty) = 1356 \text{ K}$. Отсюда для скачка удельной энтропии ФПК-Ж имеем $\Delta s_m/k_b = 1.155$.

Рис. 1. Зависимость относительных величин: температуры плавления **П**, скачка энтропии \bigstar и скрытой теплоты о ФПК-Ж от $N^{-1/3}$ для нанокристаллов меди, полученные в [9]. Верхние штрихпунктирная и пунктирная линии — расчет T_N^* и T_m^* по (17). Штриховая и сплошная линии — расчет зависимостей функций Δs^* и Δh^* от $N^{-1/3}$ по формулам (10) и (13) при использовании зависимостей (17) и $\Delta s_m/k_b = 1.155$. Функции Δs^* и Δh^* становятся равными нулю при INT(N_0) = 54.

Рис. 2. Зависимости (18) для температуры плавления (сплошная линия) и температуры кристаллизации (две пунктирные линии) от аргумента $N^{-1/3}$ для наномеди.

Подставляя значение $\Delta s_m/k_b$ и формулы (17) в (10) и (13), получим зависимости $\Delta s(N)^*$ и $\Delta h(N)^*$, показанные на рис. 1. Можно видеть, что функции Δs^* и Δh^* становятся равными нулю при $N_0^{-1/3} = 0.26474026$, т. е. при INT(N_0) = 54. Здесь функция INT(N) округляет величину N до целого значения.

Известно, что температура кристаллизации макрокристалла всегда меньше его температуры плавления, причем для меди [7,8] $T_N(N = \infty)/T_m(N = \infty) =$ = 0.722–0.867. Используя данный экспериментальный факт и формулы (17), получим зависимости (в К)

$$T_m(N) \cong 1356 \left(1 - \frac{2 \times 0.7937}{N^{1/3}} \right),$$

$$T_N(N) \cong (979 - 1176) \left(1 - \frac{0.7937}{N^{1/3}} \right).$$
(18)

На рис. 2 изображены зависимости (18), откуда видно, что данные зависимости пересекаются при INT(T_x) = 49–309, что дает среднее 179. Это согласуется с результатами, полученными в [2] методом молекулярной динамики с использованием потенциала сильной связи INT(N_x) = 125–135. Отметим, что в [2] изучалась кристаллизация нанокапли меди в нанокристалл с икосаэдрической структурой, ибо методом молекулярной динамики не удалось кристаллизовать нанокаплю меди в ГЦК структуру.

3. О размерном пределе для ФПК-Ж

Будут ли равны величины N_x и N_0 ? Для ответа на этот вопрос используем локализованный критерий ФПК—Ж [7,8], исходя из которого было получено соотношение

$$\frac{T_m}{T_n} \cong \frac{k_n(s)}{k_m(l)} \left[\frac{\upsilon(l)}{\upsilon(s)} \right]^{b/3} \left[\frac{k_p(l)}{k_p(s)} \right]^{(b+2)/3},\tag{19}$$

где b — степень отталкивающей ветви парного потенциала межатомного взаимодействия типа Ми–Леннарда– Джонса: $\varphi(r) = [D/(b-a)][a(r_0/r)^b - b(r_0/r)^a]$, который не меняется при ФПК–Ж и не зависит от числа атомов.

В [10] было показано, что если параметр Линдеманна не меняется с размером нанокристалла, то локализационный критерий ФПК-Ж не зависит от размера наночастицы. Поэтому если принять $N_x = N_0$, то из (19) следует, что должно выполняться условие

$$\frac{k_n(s)}{k_n(l)} \left[\frac{k_p(l)}{k_p(s)} \right]^{(b+2)/3} = 1.$$
 (20)

Частным решением уравнения (20) являются равенства $k_n(s) = k_n(l)$ и $k_p(s) = k_p(l)$. Но данные равенства для точки N_0 являются тождествами в силу физической неразличимости фаз в данной точке: $\Delta v(N_0) = \Delta s(N_0) = 0$. Поэтому в рамках принятых допущений можно считать $N_x = N_0$. При этом величина N_0 будет зависеть от формы нанокристалла: чем больше форма нанокристалла отклонена от наиболее энергетически устойчивой формы (в данном случае — куба), тем больше будет значение N_0 .

Но если при определенном размере кластера (N_0) исчезают гистерезис ФПК-Ж $(T_N(N_0) = T_m(N_0))$ и физическое различие фаз $(\Delta v^* = \Delta s^* = 0)$, то может ли здесь реализоваться критическая точка, т.е. перейдет ли

Рис. 3. Толщина поверхностного слоя Δ (в нм) при температуре ФПК-Ж, как функция радиуса нанокристалла меди, полученная в [9] методом молекулярной динамики.

при N_0 ФП первого рода в ФП второго рода? Это возможно только если функции $\Delta v^*(N)$ и $\Delta h^*(N)$ становятся равными нулю при целочисленном значении N_0 , как на это и было указано в [11], исходя из условий касания бинодали и спинодали ФПК-Ж. Если же значение N_0 не целочисленное, то при INT (N_0) будет наблюдаться ФП первого рода, а при INT $(N_0) - 1$ никакого ФП уже не будет. Но величину N_0 можно сделать целочисленной деформацией формы кластера. Вместе с тем, исходя из результатов работы [12] и при не целочисленном значении N_0 , можно попытаться достичь критической точки, помещая кластер в статическое электрическое или магнитное поле.

Если в точке N₀ исчезает физическое различие фаз, то в ней должно достигаться равенство удельных поверхностных энергий, причем $\sigma(s) = \sigma(l)$. С другой стороны, как обнаружено в [13], для монокристаллов элементарных металлов и полупроводников отношение $\sigma(s)/\sigma(l)$ изменяется в интервале 1.1–1.7, причем такое отношение $\sigma(s)/\sigma(l)$ возрастает с увеличением температуры плавления макрокристалла Т_т. Из данных фактов следует, что функция $\sigma(N)$ для нанокристалла при ФПК-Ж убывает с уменьшением N сильнее, чем убывает функция $\sigma(N)$ для нанокапли при ФПК–Ж. Это обусловлено неравенством (11), т.е. сильным разрыхлением поверхностного слоя нанокристалла по сравнению с поверхностью нанокапли. На рис. 3, взятом из работы Делогу [9], показано, как возрастает толщина поверхностного слоя Δ (в nm) при температуре ФПК-Ж при уменьшении радиуса $R_p = r_b + \Delta$ нанокристалла меди при той же самой температуре ФПК-Ж.

61

Напомним, что здесь рассматривается безопорная (free-standing) наночастица со свободной поверхностью (surface-free nanoparticle). Если же наночастица находится на подложке, то это может внести свой вклад в полученные здесь результаты.

Отметим, что ФПК-Ж — это статистический эффект, возникающий в системе взаимодействующих частиц (атомов или молекул). Поэтому во многих работах (см., например, [14]) отмечалось, что при определенном числе частиц должно исчезать физическое различие фаз, а потому должен исчезать и ФПК-Ж.

Вместе в тем известны работы (см., например, [15]), где экспериментальный факт слияния функций $T_N(R_p)$ и $T_m(R_p)$ ниже определенного радиуса наночастицы (R_{pc}) объяснялся исчезновением поверхностного натяжения у наночастицы (нанокристалла или нанокапли), когда ее размер близок к толщине поверхностного слоя, т.е. $\sigma(s) = \sigma(l) = 0$ при $R_{pc} \cong \Delta$. В [15] утверждается, что после слияния функций $T_N(R_p)$ и $T_m(R_p)$ $\Phi\Pi K- \mathcal{K}$ при $R_p < R_{pc}$ происходит, но уже без гистерезиса, т.е. без переохлаждения расплава. Некорректность предложенного в [15] объяснения состоит в том, что для величины разности температур плавления и кристаллизации авторы [15] использовали зависимость $T_m(R_p) - T_N(R_p) \sim [\sigma(s) - \sigma(l)]/\Delta h$, где, однако, не учитывалась зависимость $\Delta h(R_p)$. Кроме того, если $\sigma(s) = \sigma(l)$, то исчезает межфазная граница, т.е. исчезает различие фаз. Если же $\sigma(s) = \sigma(l) = 0$, то это условие критической точки ФП, где нанокластер будет либо фрагментировать, либо менять форму, либо менять структуру, стремясь перейти в область параметров, гле $\sigma > 0$.

Выводы

1. Уменьшение функции $\Delta h(N)$ с уменьшением N обусловлено тремя причинами: а) уменьшением температуры плавления ввиду роста доли атомов, находящихся в поверхностном слое и имеющих амплитуду колебаний, большую, чем имеют атомы в объеме; б) при плавлении уменьшается частота колебаний атомов, причем чем меньше N, тем сильнее уменьшается отношение $\Theta(s)/\Theta(l)$ ввиду большей разрыхленности поверхности нанокристалла по сравнению с поверхностью нанокапли в точке ФПК-Ж; в) при плавлении ограненного (а тем более дендритизованного) нанокристалла часть поглощаемой теплоты плавления компенсируется выделяющейся при переходе нанокристалл — нанокапля поверхностной энергией кристалла. А при кристаллизации нанокапли в нанокристалл (а тем более в дендрит) часть выделяющейся теплоты ФПК-Ж идет на создание поверхности нанокристалла.

2. Чем больше форма плавящегося нанокристалла отклонена от наиболее энергетически устойчивой формы куба (или чем более дендритизована форма поверхности у кристаллизующегося нанокристалла), тем меньше будет как величина Δs^* , так и значения Δh^* и Δv^* .

3. При определенном размере наночастицы N_0 функции Δh , Δs и $\Delta \sigma$ становятся равными нулю, и исчезает гистерезис между температурой плавления и температурой начала кристаллизации: $T_N(N_0) = T_m(N_0)$. В таком кластере из INT (N_0) атомов физическое различие фаз исчезает. Поэтому при $N \leq N_0$ невозможно реализовать ФПК-Ж, где бы величины Δs , Δh и Δv были бы отрицательны.

4. Значение N_0 зависит от формы кластера: чем больше форма кластера отклонена от наиболее энергетически устойчивой формы (куба), тем больше величина N_0 и тем быстрее убывают при уменьшении N как функции $T_m(N)$, $s(N)_s$ и $\sigma(N)_s$, так и скачки свойств при ФПК–Ж: Δs , Δh и Δv и $\Delta \sigma$. Для наномеди этот размер лежит в интервале $N_0 = 49-309$.

5. В кластере из N_0 атомов может реализоваться критическая точка, т.е. в таком кластере ФПК-Ж из ФП первого рода может стать ФП второго рода. Для этого необходимо, чтобы значение N_0 было бы целочисленным.

Автор выражает благодарность Д.Н. Кобзаренко, К.Н. Магомедову и З.М. Сурхаевой за полезные дискуссии и всестороннюю помощь в работе.

Работа выполнена при поддержке Программы Президиума РАН (проект № 2.1.19) и РФФИ (гранты № 09-08-96508-р-юг-а и № 10-02-00085-а).

Список литературы

- [1] Макаров Г.Н. // УФН. 2010. Т. 180. № 2. С. 185–207.
- [2] Гафнер С.Л., Редель Л.В., Гафнер Ю.Я. // ЖЭТФ. 2009.
 Т. 135. № 5. С. 899–916.
- [3] Регель А.Р., Глазов В.М. // Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978. 342 с.
- [4] Магомедов М.Н. // Письма в ЖТФ. 2009. Т. 35. Вып. 14. С. 67–75.
- [5] Магомедов М.Н. // ФТТ. 2004. Т. 46. Вып. 5. С. 924–937.
- [6] Магомедов М.Н. // Письма в ЖТФ. 2007. Т. 33. Вып. 5. С. 62–70.
- [7] Магомедов М.Н. // Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: ФИЗМАТЛИТ, 2010. 544 с.
- [8] Магомедов М.Н. // ЖТФ. 2008. Т. 78. Вып. 8. С. 93–100.
- [9] Delogy F. // Phys. Rev. B. 2005. Vol. 72. N 1. P. 205418 (1-9).
- [10] Магомедов М.Н. // ЖТФ. 2010. Т. 80. Вып. 9. С. 141–145.
- [11] *Магомедов М.Н.* // Теплофизика высоких температур. 1992. Т. 30. № 3. С. 470–476; № 4. С. 836–838.
- [12] Магомедов М.Н. // Письма в ЖТФ. 2002. Т. 28. Вып. 3. С. 73–79.
- [13] *Кулиш У.М.* // Физическая химия поверхностных явлений в расплавах. Киев: Наукова думка, 1971. С. 46–51.
- [14] *Самсонов В.М.* // Изв. РАН. Сер. физ. 2005. Т. 69. № 7. С. 1036–1038.
- [15] Валов П.М., Лейман В.И. // ФТТ. 1999. Т. 41. Вып. 2. С. 310–318.