от Логический элемент NOT в двумерном электронном волноводе

© Д.Е. Цуриков, А.М. Яфясов

Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Россия e-mail: DavydTsurikov@mail.ru

(Поступило в Редакцию 8 февраля 2011 г.)

Предложена теоретическая модель логического элемента NOT на базе двумерного электронного волновода. Приведены результаты оптимизации параметров геометрии и внешнего электрического поля для достижения максимальной эффективности работы прибора.

Актуальной задачей современной наноэлектроники является применение квантовых эффектов для построения логических элементов вычислительной техники [1]. Как правило, основой подобных элементов является двухуровневая система. Для ее реализации можно использовать эффекты размерного квантования в полупроводниковых структурах. В настоящей работе предложена теоретическая модель логического элемета NOT в двумерном электронном волноводе.

Рассмотрим задачу рассеяния электрона в двумерном волноводе, к участку которого приложено однородное электрическое поле (рис. 1). Движение электрона в полупроводнике описывается уравнением Шредингера

$$\left[-\frac{\hbar^2}{2m_e}\Delta + V(X,Y)\right]\varphi(X,Y) = E\varphi(X,Y),$$
$$\{X,Y\} \in (-\infty,+\infty) \times (0,B), \tag{1}$$

где \hbar — постоянная Планка, m_e — эффективная масса электрона, Δ — оператор Лапласа, $V(X, Y) = e_0 \mathcal{E}_Y Y \theta(X) \theta(A - X)$ — потенциал, e_0 — элементарный заряд, \mathcal{E}_Y — проекция напряженности внешнего электрического поля на ось Y, E — энергия электрона.

Рис. 1. Конструкция логического элемента NOT в двумерном электронном волноводе: *1* — металл, *2* — диэлектрик, *3* — полупроводник. В силу симметрии прибор одинаково влияет на электроны, движущиеся как слева направо, так и справа налево.

Вводя обозначения

$$\begin{aligned} x &:= \frac{X}{B}, \qquad y &:= \frac{Y}{B}, \qquad a &:= \frac{A}{B}, \\ \Psi(x, y) &:= B\varphi(Bx, By), \quad \alpha &:= \frac{2m_e B^2 e_0}{\hbar^2} \mathcal{E}_Y, \\ \varepsilon &:= \frac{2m_e B^2}{\hbar^2} E, \end{aligned}$$

$$(2)$$

безразмерную задачу в *узле* (в рассеивающем участке волновода) с учетом условий сшивания волновой функции с функциями в *рукавах* (в участках волновода, примыкающих к узлу) можно записать в виде [2]

$$\begin{cases} [-\partial_x^2 - \partial_y^2 + \alpha y] \times \\ \times \Psi^{\diamond}(x, y) = \varepsilon \Psi^{\diamond}(x, y), \quad \{x, y\} \in (0, a) \times (0, 1), \\ \Psi^{\diamond}(x, 0) = \Psi^{\diamond}(x, 1) = 0, \quad x \in (0, a), \\ (K + i\partial_1)W\Psi^{\diamond}(0, y) = 2K\psi^{\triangleleft}(0, y), \quad y \in (0, 1), \end{cases}$$
(3)

где ∂_1 — оператор дифференцирования функции по первому аргументу. Здесь условия на границах узла с рукавами заданы в локальных системах координат (ЛСК) [2]:

$$W^{1}\Psi^{\diamond}(x, y) = \Psi^{\diamond}(-x, y),$$
$$W^{2}\Psi^{\diamond}(x, y) = \Psi^{\diamond}(x + a, y).$$

Это удобно, так как по определению в ЛСК оси абсцисс направлены от узла, а волны, падающие на узел из k-рукава, и волны, рассеянные узлом в k-рукав, можно записать в компактном виде

И

$$\psi^{\triangleright k}(x, y) := \sum_{m=1}^{\infty} c_m^{\triangleright k} \left[\exp(+iKx)h(y) \right]_m^k,$$

 $\psi^{\triangleleft k}(x, y) := \sum_{m=1}^{\infty} c_m^{\triangleleft k} \left[\exp(-iKx)h(y) \right]_m^k$

соответственно *k* = 1, 2. В задаче (3) также используются обозначения

$$K^{kq} := I^{kq} \sum_{m=1}^{\infty} |h_m^k\rangle \kappa_m^k \langle h_m^k|, \ \kappa_m^k := \sqrt{\varepsilon - \varepsilon_{\perp m}^k}, \ \varepsilon_{\perp m}^k = (\pi m)^2,$$
$$h_m^k(y) = \sqrt{2}\sin(\pi m y), \quad k, q = 1, 2, \quad m \in \mathbb{N},$$
(4)

где I — единичная матрица, $\varepsilon_{\perp m}^k$ — энергия размерного квантования в k рукаве (энергия канала). Так как в этой задаче рукава одинаковы, далее также будут использоваться сокращенные обозначения: $h_m := h_m^1 = h_m^2$ и $\varepsilon_{\perp m} := \varepsilon_{\perp m}^1 = \varepsilon_{\perp m}^2$.

Для волн, рассеянных узлом, из условий сшивания можно записать соотношение

$$\psi^{\triangleright}(0,y) = W\Psi^{\diamond}(0,y) - \psi^{\triangleleft}(0,y), \qquad y \in (0,1).$$
 (5)

Известно, что расширенная матрица рассеяния S связывает амплитуды волн, рассеянных узлом, $c_m^{\triangleright k}$ с амплитудами волн, падающих на узел, $c_m^{\triangleleft k}$ [3]:

$$c^{\triangleright} = Sc^{\triangleleft}.$$
 (6)

Решив задачу (3), с учетом (4)–(6) можно найти S-матрицу узла

$$S = G^{\diamond} \left[iKG^{\diamond} - \partial_1 G^{\diamond} \right]^{-1} (0)i2K - I,$$

$$G^{\diamond}_{nm}(x) := \langle h_n | h_m^{\diamond} \rangle \begin{bmatrix} \exp(-\kappa_m^{\diamond} x) & \exp(+\kappa_m^{\diamond} x) \\ \exp(+\kappa_m^{\diamond} [x+a]) & \exp(-\kappa_m^{\diamond} [x+a]), \end{bmatrix}$$
(7)

где $n \in \mathbb{N}$, $\kappa_m^{\diamond} := \sqrt{\varepsilon - \varepsilon_{\perp m}^{\diamond}}$, $\varepsilon_{\perp m}^{\diamond}$ и h_m^{\diamond} — собственные значения и нормированные собственные функции, соответственно задачи вида

$$\begin{cases} [-\partial_y^2 + \alpha y]h^{\diamond}(y) = \varepsilon_{\perp}^{\diamond}h^{\diamond}(y), \quad y \in (0, 1), \\ h^{\diamond}(0) = h^{\diamond}(1) = 0. \end{cases}$$
(8)

Решением задачи (8) является линейная комбинация функции Эйри

$$h^{\diamond}(y) = c^{\diamond 1} \operatorname{Ai}\left(\frac{\alpha y - \varepsilon_{\perp}^{\diamond}}{\alpha^{2/3}}\right) + c^{\diamond 2} \operatorname{Bi}\left(\frac{\alpha y - \varepsilon_{\perp}^{\diamond}}{\alpha^{2/3}}\right).$$
(9)

Используя граничные условия в (8), из (9) имеем

$$\begin{bmatrix} \operatorname{Ai}\left(\frac{-\varepsilon_{\perp}^{\circ}}{\alpha^{2/3}}\right) & \operatorname{Bi}\left(\frac{-\varepsilon_{\perp}^{\circ}}{\alpha^{2/3}}\right) \\ \operatorname{Ai}\left(\frac{\alpha-\varepsilon_{\perp}^{\circ}}{\alpha^{2/3}}\right) & \operatorname{Bi}\left(\frac{\alpha-\varepsilon_{\perp}^{\circ}}{\alpha^{2/3}}\right) \end{bmatrix} \begin{bmatrix} c^{\circ 1} \\ c^{\circ 2} \end{bmatrix} = 0.$$
(10)

Уравнение (10) позволяет вычислить неизвестные коэффициенты в (9), а условие его разрешимости даст уравнение на $\varepsilon_{\perp}^{\diamond}$

$$\operatorname{Ai}\left(\frac{-\varepsilon_{\perp}^{\diamond}}{\alpha^{2/3}}\right)\operatorname{Bi}\left(\frac{\alpha-\varepsilon_{\perp}^{\diamond}}{\alpha^{2/3}}\right) = \operatorname{Bi}\left(\frac{-\varepsilon_{\perp}^{\diamond}}{\alpha^{2/3}}\right)\operatorname{Ai}\left(\frac{\alpha-\varepsilon_{\perp}^{\diamond}}{\alpha^{2/3}}\right).$$
(11)

Таким образом, решив (10), (11) и нормировав функцию (9), можно найти значения элементов матрицы рассеяния (7).

Для расчета транспортных свойств узла необходимо найти связь между падающими и рассеянными потоками. Введем безразмерные *потоки в каналах* следующим образом:

$$\iota_{m}^{\triangleleft k} \coloneqq \frac{i}{2} \int_{0}^{1} dy \left[\psi_{m}^{\triangleleft k} \partial_{1} \bar{\psi}_{m}^{\triangleleft k} - \bar{\psi}_{m}^{\triangleleft k} \partial_{1} \psi_{m}^{\triangleleft k} \right],$$
$$\iota_{m}^{\triangleright k} \coloneqq \frac{i}{2} \int_{0}^{1} dy \left[\psi_{m}^{\triangleright k} \partial_{1} \bar{\psi}_{m}^{\triangleright k} - \bar{\psi}_{m}^{\triangleright k} \partial_{1} \psi_{m}^{\triangleright k} \right], \qquad (12)$$

где $t_m^{\triangleleft k}$ и $t_m^{\triangleright k}$ — падающий и рассеянный электронные потоки соответственно в *m*-канале *k*-рукава, а черта над волновыми функциями означает комплексное сопряжение. Из (12) можно получить выражения вида

$$\iota_m^{\triangleleft k} = \begin{cases} -\kappa_m^k |c_m^{\triangleleft k}|^2, & m \in \mathbb{O}, \\ 0, & m \notin \mathbb{O}, \end{cases}$$
$$\iota_m^{\triangleright k} = \begin{cases} +\kappa_m^k |c_m^{\triangleright k}|^2, & m \in \mathbb{O}, \\ 0, & m \notin \mathbb{O}, \end{cases}$$
(13)

где $\mathbb{O} := \{m | \varepsilon_{\perp m} < \varepsilon\}$ — номера *открытых каналов*. С учетом выражений (6) и (13) запишем

$$\iota_m^{\triangleright k} = \begin{cases} [Cd^{\triangleleft}]_m^{*k} [Cd^{\triangleleft}]_m^k, & m \in \mathbb{O}, \\ 0, & m \notin \mathbb{O}, \end{cases}$$
(14)

где $C := K^{+1/2}SK^{-1/2}$ — потоковая матрица рассеяния, $d^{\triangleleft} := K^{1/2}c^{\triangleleft}$. Согласно условию сохранения полного потока

$$\mathbf{0} = \iota^{\triangleright} + \iota^{\triangleleft}, \qquad \iota^{\triangleleft} = \sum_{m \in \mathbb{O}}^{k \in \{1, 2\}} \iota_m^{\triangleleft k}, \qquad \iota^{\triangleright} = \sum_{m \in \mathbb{O}}^{k \in \{1, 2\}} \iota_m^{\triangleright k}, \tag{15}$$

имеем следующее условие унитарности:

где

$$C_{++}^{\dagger}C_{++} = I_{++} = C_{++}C_{++}^{\dagger}, \qquad (16)$$

$$C_{++} := \{C_{mn}^{kq}\}_{m,n\in\mathbb{O}}^{k,q\in\{1,2\}}$$

— блок потоковой матрицы рассеяния, отвечающий открытым каналам

$$I_{++} := \{I_{mn}^{kq}\}_{m,n\in\mathbb{O}}^{k,q\in\{1,2\}}$$

Согласно свойству (16), квадраты модулей элементов матрицы C_{++} имеют вероятностную интерпретацию.

Рассмотрим диапазон энергий электрона, соответствующий двум открытым каналам: $\varepsilon \in (\varepsilon_{\perp 2}, \varepsilon_{\perp 3})$, $\mathbb{O} = \{1, 2\}$. Пусть электрон падает на узел, находясь только в первом канале первого рукава $\iota_m^{\triangleleft k} = I_{1m}^{1k}$. Найдем поток во втором канале второго рукава. Согласно (13) и (14), он запишется в виде

$$l_2^{>2} = -P l_1^{<1}, \qquad P := |C_{21}^{21}|^2, \qquad (17)$$

где *P* — вероятность того, что электрон пройдет сквозь узел, изменив канал. Ассоциируем ток в первом канале

$\Delta E/k_0T$	InP			GaAs			GaSb		
	A, nm	B,nm	$\mathcal{E}, \mathrm{V/m}$	A,nm	B, nm	$\mathcal{E}, \mathrm{V/m}$	A, nm	B,nm	$\mathcal{E}, \mathrm{V/m}$
1	7.5	17	$5.7\cdot 10^7$	8.5	19	$5.0\cdot 10^7$	10.5	23	$4.1\cdot 10^7$
2	5.3	12	$1.6\cdot 10^8$	6.0	13	$1.4\cdot 10^8$	7.4	16	$1.1\cdot 10^8$
3	4.3	9.6	$2.9\cdot 10^8$	4.9	11	$2.6\cdot 10^8$	6.1	13	$2.1\cdot 10^8$

Параметры квантового логического элемента NOT ($T = 300 \, {\rm K}$)

с логическим нулем ("0"), а ток во втором канале с логической единицей ("1"). В силу симметрии задачи $|C_{21}^{21}|^2 = |C_{12}^{21}|^2$. Тогда величину *Р* можно интерпретировать, как эффективность работы узла в качестве квантового логического элемента NOT (рис. 2).

Для наилучшей работы прибора величина P должна иметь максимальное значение, то есть, согласно (16), значение, близкое к единице. Для достижения этого оптимизируем параметры задачи (3): ε , α , a. В качестве примера рассмотрим следующие диапазоны:

$$\varepsilon \in (\varepsilon_{\perp 2}, \varepsilon_{\perp 3}), \quad \alpha \in [-700, -100], \quad a \in [0.1, 1.5].$$

В результате расчетов был найден набор параметров, отвечающих локальному максимуму функции *P*. Зафиксируем значения α и *a*, построим график вероятности *P* как функции энергии ε (рис. 3).

Из рис. З видно, что найденные значения параметров обеспечивают эффективность работы квантового логического элемента NOT, близкую к 100%. Так как важной характеристикой прибора также является рабочий диапазон энергий электрона, обозначим за $\Delta \varepsilon$ ширину пика на уровне P = 0.9. В данном случае $\Delta \varepsilon = 15$.

Для оценки параметров прибора в случае конкретных материалов следует перейти от безразмерной задачи к размерной. Найдем длину и ширину узла, а также величину внешнего электрического поля на основе проведенных расчетов, зафиксировав размерный рабочий диапазон энергий ΔE . Согласно (2), получим

$$A = aB, \qquad B = \sqrt{\frac{\hbar^2}{2m_e} \frac{\Delta\varepsilon}{\Delta E}}, \quad \mathcal{E} = \frac{\sqrt{2m_e}}{e_0\hbar} \left(\frac{\Delta E}{\Delta\varepsilon}\right)^{3/2} |\alpha|$$
(18)

Рассчитаем параметры прибора (18) для трех различных материалов: InP ($m_e = 0.080m_0$), GaAS ($m_e = 0.063m_0$), GaSb ($m_e = 0.041m_0$) [4]. Рассмотрим значения ΔE , кратные характерной величине теплового размытия энергии электрона k_0T .

Как видно из таблицы, высокая (> 90%) эффективность работы логического элемента NOT для рассмотренных материалов при комнатной температуре достижима при ширине волновода, существенно превосходящей атомные размеры. Это важно как с технологической точки зрения, так и с точки зрения использованной в расчетах модели, основанной на зонной теории твердого тела. Значения электрического поля также можно считать допустимыми, не разрушающими материал. Таким образом, в настоящей работе предложена теоретическая модель логического элемента NOT на базе двумерного электронного волновода. На примере InP, GaAs и GaSb показано, что высокая (> 90%) эффективность работы прибора при комнатной температуре достижима при напряженности поля $\mathcal{E} \approx 10^7 - 10^8$ V/m и ширине волновода $B \sim 10^{-8}$ m. Расчеты показали, что для реализации устройства на основе полупроводников с параболическим законом дисперсии предпочтительны-

Рис. 2. Схема работы логического элемента NOT в двумерном электронном волноводе: преобразование "0" в "1" и "1" в "0". Сплошные линии — энергии каналов $\varepsilon_{\perp 1}$ и $\varepsilon_{\perp 2}$, стрелки на них указывают направление электронного потока в каналах. Штриховые линии и стрелки на них иллюстрируют принцип работы прибора: смена электроном канала с вероятностью *P* при упругом рассеянии в узле.

Рис. 3. Эффективность работы логического элемента NOT: $\alpha = -547, a = 0.452, \varepsilon_{max} = 57.3, P_{max} = 0.971, \Delta \varepsilon = 15.$

Журнал технической физики, 2011, том 81, вып. 9

ми являются материалы с малой эффективной массой носителей заряда.

Список литературы

- [1] *Nielsen M.A., Chung I.L.* Quantum Computation and Quantum Information. Cambridge University Press, 2000.
- [2] Цуриков Д.Е., Яфясов А.М. // Вестн. СПбГУ. Сер. 4. 2010.
 Вып. 1. С. 153–157.
- [3] *Ньютон Р.* // Теория рассеяния волн и частиц. Пер. с англ. М.: Мир, 1969.
- [4] Levinshtein M., Rumyatsev S., Shur M. Handbook series on Semiconductor Parameters. World Scientific. Singapore–New Jersey–London–Hong Kong, 1999. V. 2. 205 p.