Влияние упорядочения на величину объемного изменения и эффект памяти формы при мартенситном превращении в сплаве Fe₃Pt

© Ю.Н. Коваль, С.А. Пономарева

Институт металлофизики им. Г.В. Курдюмова НАН Украины, 03680, МСП, Киев-142, Украина e-mail: www.koval.imp.kiev.ua; www.Sv-Ponomaryova@yandex.com

(Поступило в Редакцию 13 октября 2010 г.)

Исследовано влияние термообработки на значение объемного эффекта ($\Delta V/V$) и степень восстановления формы при мартенситном превращении для сплава Fe-24 at.% Pt. Установлено, что увеличение времени отжига от 0 до 300 min при 650°C приводит к плавному снижению $\Delta V/V$ от 1.26% для закаленного состояния до 0.987% для $\tau = 300$ min. Характеристические температуры мартенситного превращения понижаются, а гистерезис проходит через минимум. Эффект памяти формы в термообработанных образцах после $\tau = 40$ min достигает 100%.

Введение

05

Система Fe-Pt является классическим объектом исследования мартенситного превращения (МП), которому посвящено значительное количество работ [1–8]. Реализация перехода порядок-беспорядок, магнитного и мартенситного превращения открывает ряд особенностей, изучение которых далеко от завершения. Открытым остается вопрос о взаимном влиянии этих превращений, частично он решен на примерах исследования отдельных характеристик в работах [9–19].

Особенностью мартенситного перехода в сплаве Fe—Pt является наличие возможности изменения способа его реализации. Закаленный сплав состава Fe₃Pt находится в разупорядоченном состоянии и показывает взрывную кинетику МП. При определенном режиме термообработки он переходит в упорядоченное состояние и МП становится термоупругим [13], которое характеризуется малой величиной химической движущей силы; незначительной сдвиговой компонентой деформации формы; малым объемным эффектом МП и высоким пределом упругости матрицы [14].

Объемный эффект при мартенситном превращении в системе Fe-Pt исследован в работе [15]. Было установлено, что при разных степенях упорядочения эта величина имеет разный знак: в разупорядоченном состоянии она равна +1.4%, а при значении параметра дальнего порядка $0.8\Delta V/V = -0.5\%$.

Настоящая работа посвящена исследованию эволюции объемного эффекта при мартенситном превращении в сплаве Fe—Pt вследствие упорядочения, а также эффекта памяти формы в зависимости от режима термообработки.

Экспериментальные методы

Сплав Fe-Pt с содержанием Pt 24 at.% был выплавлен в индукционной печи в атмосфере аргона. В качестве шихтовых материалов использовано карбонильное железо чистотой 99.98 и платина чистотой 99.99. Полученный сплав гомогенизирован в вакууме при температуре 1100°C на протяжении 10 h.

Для определения величины объемного эффекта и характеристических температур МП использовался дилатометр, построенный на базе прибора "Микрон-02" (образцы цилиндрической формы длиной 6 mm и диаметром 2 mm). Значение восстанавливаемой деформации (эффект памяти формы) измерялось методом трехточечного изгиба (пластинки размером $0.45 \times 2 \times 15 \text{ mm}$) [16]. Режимы термической обработки исследованных образцов приведены в табл 1.

Результаты и обсуждение

На рис. 1–3 представлены дилатометрические и деформационные кривые для сплава Fe–24Pt при различных предварительных термических обработках.

Закаленное состояние Fe-24Pt характеризуется значительным температурным гистерезисом превращения (ΔT): 240°C и объемным эффектом: +1.26% (рис. 1, *a*). В результате отжига наблюдается изменение формы дилатометрической кривой и постепенное сужение ΔT (табл. 2).

Таблица 1. Режимы термообработки сплава Fe-Pt

N₂	Режимы термообработки					
1	Закалка от 1000°С/вода					
2	Отжиг при 650°С, 20 min					
3	То же, 30 min					
4	» », 40 min					
5	» », 60 min					
6	» », 180 min					
7	» », 300 min					
8	» », 2400 min					

Таблица 2. Характеристические значения температуры, объемный эффект и степень восстановления формы при мартенситном превращении в сплаве Fe–Pt

N⁰	M_s , °C	$M_f, ^\circ C$	$A_s, ^{\circ}C$	A_f , °C	ΔT , °C	$\Delta V/V,\%$	$K_{\rm shme},\%$
1	60	-55	300	430	240	1.26	60
2	70	-70	190	430	120	1.26	75
3	25	-80	90	255	65	1.25	85
4	25	-75	-35	50	60	1.215	100
5	30	-90	-65	65	95	1.2	100
6	30	-105	-85	60	115	1.02	100
7	30	-105	-85	70	115	0.987	100
8	—	—	—	—	—	—	100

После отжига сплава на протяжении 40 min гистерезис превращения сужается до 60°С. Объемный эффект при этом также снижается до +1.215% (рис. 2, *a*). При увеличении времени упорядочения объемный эффект продолжает уменьшаться до 0.987% ($\tau = 300$ min). В результате отжига на протяжении 2400 min при 650°С получена зависимость, характерная для нормального теплового расширения материала (рис. 3, *a*). Таким образом, согласно дилатометрическим измерениям, при этой термообработке фазовый переход отсутствует. Но исходя из данных по эффекту памяти формы он имеет место (рис. 3, *b*).

При исследовании эффекта памяти формы (ЭПФ Shape memory effect) было установлено, что в неупорядоченном состоянии при широком гистерезисе восстановление формы (K_{shme}) составляет 60% (рис. 1, *b*). Отжиг в течение 20 min при 650°С приводит к возрастанию этой величины до 75% (табл. 2). В результате более длительного упорядочения ($\tau = 40$ min) коэффициент восстановления формы при МП достигает 100% на первом цикле (рис. 2, *b*) и сохраняется для всех дальнейших режимов термообработки (табл. 2).

Особенное внимание следует обратить на поведение сплава при отжиге на протяжении 2400 min. Из рис. 3, b видно, что температурный интервал МП настолько смещен в сторону низких температур, что полную петлю гистерезиса не удается зафиксировать даже при охлаждении до -196° С, хотя мартенситное превращение имеет место.

На рис. 4 приведены зависимости характеристических температур МП от длительности отжига. Как видно из рисунка, температура начала прямого мартенситного превращения (M_s) вследствие проведенных термообработок понижается в пределах 30 градусов: от 60°С (закаленное состояние) до 30°С (отжиг на протяжении 60 min при 650°С). При дальнейшем увеличении времени упорядчоения температура M_s не меняется. Температура начала обратного МП (A_s) в случае закаленного состояния составляет 300°С, а в результате отжига на протяжении 40 min при 650°С она понижается до -35° С (рис. 4). При дальнейшем отжиге (до 180 min)

As снижается еще на 50 градусов, последующее увеличение времени отжига не меняет величины As.

Таким образом, для режимов термообработок 1-3, согласно табл. 1, наблюдается ситуация, когда температура начала прямого мартенситного превращения ниже температуры начала обратного мартенситного превращения $(M_s < A_s)$. Начиная с длительности отжига 40 min происходит изменение соотношения между температурами начала прямого и обратного МП ($M_s < A_s$ на $M_s > A_s$), что впервые было зафиксировано в работе [13]. Авторы этой работы утверждают, что при переходе от $M_s < A_s$ к M_s > A_s существенно расширяется температурный интервал обратного МП, но они ориентировались на значительные времена отжига: на протяжении 10, 100 и 1050 h. При коротких временах термообработки (режимы приведены в табл. 1) при переходе от $M_s < A_s$ к $M_s > A_s$ (режим термообработки 4) температурный интервал обратного МП сужается, а затем, при дальнейшем отжиге, происходит некоторое расширение (рис. 5, a).

Исследование гистерезиса МП показало, что значительный для закаленного состояния (240°С), он достигает минимума в результате предварительного отжига на протяжении 40 min и составляет 60°С, после чего опять наблюдается некоторое возрастание температурного гистерезиса при отжигах на протяжении 60 и 180 min, а затем при увеличении τ до 300 min его величина не меняется (рис. 5, *b*).

На рис. 6,7 представлены результаты анализа объемного эффекта при МП. Для закаленного состояния сплава Fe₃Pt объемное изменение составляет +1.26%. Отжиг приводит к снижению $\Delta V/V$: для $\tau = 300$ min при 650°C объемный эффект уменьшается до значения 0.987% (рис. 6). При исследовании изменения величины объемного эффекта в зависимости от количества реализованных термоциклов в случае закаленного состояния после 15 термоциклов объемный эффект практически

не изменяется (рис. 7, кривая *a*). Для отжигов на протяжении 60 и 300 min соответственно наблюдается возрастание величины $\Delta V/V$ в результате циклирования (рис. 7, кривая *b*, *c*). Таким образом, можно сделать предположение, что уменьшение $\Delta V/V$ при МП связано с залечиванием дефектов в результате отжига закаленного состояния [17]. При термоциклировании отожженного состояния уже 15 термоциклов, очевидно, приводят к появлению дополнительных дефектов и $\Delta V/V$ увеличивается. В закаленном состоянии количество дефектов достаточно велико и относительно небольшое термоциклирование существенно не изменяет дефектного состояния, что, в свою очередь, не сказывается на величине $\Delta V/V$. Однако это утверждение необходимо подтвердить структурными исследоаниями.

Выводы

1. Исследование изменения объемного эффекта при мартенситном превращении под влиянием предварительной термической обработки показало, что в зависимости от длительности отжига при $T = 650^{\circ}$ С объемный эффект уменьшается от 1.26% для закаленного состояния до 0.987% для отжига $\tau = 300$ min.

2. Характеристические значения температуры МП понижаются с увеличением времени отжига, а гистерезис проходит через минимум ($\Delta T = \min$ при $\tau = 40 \min$). При этом происходит изменение соотношения между характеристическими значениями температуры мартенситного превращения с $M_s < A_s$ на $M_s > A_s$.

3. Коэффициент восстановления формы достигает 100% в результате отжига на протяжении 40 min и сохраняет свое значение вплоть до $\tau = 2400$ min. Вследствие отжига на протяжении 40 min МП приобретает термоупругий характер.

Список литературы

- [1] *Kajiwara S., Owen W.S.* // Metall. Trans. 1974. Vol. 5. N 9. P. 2047–2061.
- [2] Tadaki T, Kifune K., Kubota Y, Yamaoka H. // Mater. Sci. Eng. A. 2006. Vol. 438–440. P. 407–410.
- [3] Gruner M.F., Adeagbo W.A., Zayak A.T., Hucht A., Entel P. // Phys. Rev. B. 2010. Vol. 81. P. 064 109.
- [4] Wayman C.M., Shimizu K. // Metal Sci. J. 1972. Vol. 6. P. 175–183.
- [5] Umemoto M., Wayman C.M. // Metallography. 1979. Vol. 12. N 1. P. 23–32.
- [6] Tong H.C., Wayman C.M. // Acta Metall. 1975. Vol. 23. N 2. P. 209.
- [7] Umemoto M.O., Wayman C.M. // Acta Metall. 1978. Vol. 26.
 N 10. P. 1529–1549.
- [8] Podgorny M. // Phys. Rev. B. 1991. Vol. 43. N 13.
 P. 11 300-11 318.
- [9] Sumiyama K., Shiga M., Nakamura Y. // J. Magn. Magn. Mat. 1983. Vol. 31–34. Part 1. P. 111–112.
- [10] Oomi G., Araki H. // J. Magn. Magn. Mat. 1995. Vol. 140–144. P. 83–84.

- [11] Foos M., Frantz C., Durupt S., Gavoille G. // Scripta Metall. 1977. Vol. 11. N 8. P. 655–658.
- [12] Wayman C.M. // Scripta Metall. 1971. Vol. 5. N 6. P. 489–492.
- [13] Dunne D.P., Wayman C.M. // Metall Trans. 1973. Vol. 4. N 1.
 P. 137–145; P. 147–152.
- [14] *Christian J.W.* The theory of transformation in metals and alloys. Oxford: Pergamon Press, 2002.
- [15] Tadaki T., Shimizu K. // Scripta Metall. 1975. Vol. 9. N 7. P. 771–776.
- [16] *Мартынов .В., Хандрос Л.Г. //* ФММ. 1975. Т. 39. № 5. С. 1037–1043.
- [17] *Лариков Л.Н., Юрченко Ю.Ф.* Структура и свойства металлов и сплавов. Тепловые свойства металлов и сплавов. Справочник. К.: Наук. думка, 1985. 437 с.