06;12 Электромагнитные кристаллы на основе низкоомных неоднородностей

© А.И. Назарько, Е.А. Нелин, В.И. Попсуй, Ю.Ф. Тимофеева

Национальный технический университет Украины "Киевский политехнический институт", 03056 Киев, Украина e-mail: ye.nelin@gmail.com

(Поступило в Редакцию 9 августа 2010 г.)

Предложены электромагнитные кристаллы на основе низкоомных неоднородностей. Приведены расчетные и экспериментальные характеристики устройств на основе таких неоднородностей.

Кристаллоподобные структуры представляют значительный интерес как основа разнообразных устройств обработки сигналов. Одна из разновидностей таких структур — микрополосковые электромагнитные кристаллы (ЭК) — позволяет значительно улучшить характеристики устройств радиодиапазона.

Зонная избирательность ЭК определяется развязкой сигналов в разрешенных и запрещенных зонах. Волновые импедансы неоднородности Z и однородой области Z_0 ЭК существенно различаются. Обозначим высокоомные и низкоомные неоднородности, индексы их параметров и ЭК на их основе буквами H и L (high-and low-impedance). Развязка сигналов возрастает с увеличением или уменьшением отношения $\rho_{H,L} = Z_{H,L}/Z_0$ соответственно для H- и L-неоднородностей.

Традиционная ЭК-неоднородность в виде отверстия, расположенного под полосковым проводником и выполненного обычно лишь на металлизированной поверхности, — *H*-неоднородность. Для увеличения ρ_H необходимо выполнить отверстие и в диэлектрической подложке. Значение ρ_H возрастает с увеличением глубины отверстия и ограничено при сквозном отверстии. Так, для неоднородности, рассмотренной в [1], с углублением отверстия значение ρ_H возрастает приблизительно с 2 до 4 при $Z_0 = 50 \Omega$. Дальнейшее повышение ρ_H обеспечивает комбинированная неоднородность, сочетающая неоднородности на металлизированной поверхности, в диэлектрической подложке и на сигнальной поверхности [1]. Так, для комбинированных *H*-неоднородностей, использованных в фильтре [2], $\rho_H = 7$ при $Z_0 = 50 \Omega$.

Рассмотрим конструктивные возможности реализации *L*-неоднородности. Характеристический импеданс микрополосковой линии уменьшается с расширением сигнального проводника, с уменьшением толщины диэлектрика, с увеличением его диэлектрической проницаемости. Исходя из этого *L*-неоднородность можно сформировать такими решениями:

 несквозное металлизированное отверствие в подложке, гальванически соединенное с металлизированной поверхностью;

2) отверстие в подложке, заполненное диэлектриком более высокой диэлектрической проницаемости, чем подложка.

На рис. 1 показана структура ЭК-*L*. *L*-неоднородность сформирована под сигнальным проводником несквозным круглым металлизированным отверстием в диэлектрике.

Оценим параметры такой неоднородности. Относительная эффективная диэлектрическая проницаемость и волновой импеданс *L*-неоднородности приближенно определяются соответствующими формулами для микрополосковой линии [3]:

$$\varepsilon_e = \frac{\varepsilon + 1}{2} + \frac{\varepsilon - 1}{2\sqrt{1 + 12/x}},\tag{1}$$

$$Z = \frac{120\pi\sqrt{\varepsilon_e}}{x + 1.393 + 0.667\ln(x + 1.444)},$$
 (2)

где є и ε_e — относительная и относительная эффективная диэлектрическая проницаемость; $x = w/\Delta h$, w — ширина сигнального проводника, $\Delta h = h - h'$ — зазор между отверстием и сигнальным проводником, h — толщина диэлектрика, h' — глубина отверстия. Для узких зазоров, когда $x \gg 1$, $\varepsilon_e \approx \varepsilon$ и $Z \approx 12\pi\Delta h/w\sqrt{\varepsilon}$. В этом случае импеданс прямо пропорционален зазору и обратно пропорционален ширине проводника.

Рассчитаем возможное значение ρ_L для *L*-неоднородности с параметрами, соответствующими *H*-неоднородности [2]: $\varepsilon = 10.2$, h = 1.28 mm, w = 8 mm. При h' = 1 mm, согласно (2), имеем $Z_L = 3.8 \Omega$ (по приближенной формуле 4.1 Ω), что соответствует $\rho_L = 0.08$. Поскольку $\rho_L^{-1}/\rho_H = 1.8$, ЭК-*L* заметно эффективнее ЭК-*H*.

Обратим внимание на соотношение между ε_{eH} и ε_{eL} . Для *H*-неоднородности [2] $\varepsilon_{eH} = 1.5$. Согласно (1), $\varepsilon_{eL} = 9.5$. Поскольку $\varepsilon_{eL} \gg \varepsilon_{eH}$, при заданной электрической длине размер *L*-неоднородности в направлении распространения волны существенно меньше. При

Рис. 1. Структура ЭК-*L*: *1* — полосковый проводник, *2* — *L*-неоднородность.

одинаковых габаритах диапазон рабочих частот $\Im K-L$ ниже, а для заданного диапазона частот габариты $\Im K-L$ меньше по сравнению с $\Im K-H$.

На рис. 2 приведены экспериментальная 1 и расчетная 2 характеристики коэффициента прохождения ЭК-L с параметрами: w = 2.5 mm, диаметр отверстий 8.6 mm, период 20 mm, число отверстий 5, $h = 2.1 \text{ mm}, h' = 1.7 \text{ mm}, \varepsilon = 7$, тангенс угла диэлектрических потерь tg $\delta = 0.0025$ на частоте 10 GHz, $Z_0 = 50 \Omega$. Расчет проведен трехмерным моделированием в программном пакете Microwave Studio. Согласно (1) и (2), $\varepsilon_{eL} = 5.8$, $Z_L = 17.5 \Omega$. Исходя из одномерной модели ЭК-L в виде линии передачи, образованной чередующимися отрезками с импедансами Z_L и Z₀, характеристике 2 соответствуют $\varepsilon_{eL} = 5.6$ и $Z_L = 15.5 \Omega$, что хорошо согласуется с (1) и (2). Экспериментальные и расчетные значения средней частоты запрещенной зоны, определяемой минимумом коэффициента прохождения T_{\min} , и значения T_{\min} соответственно равны 3.33, 3.27 GHz, и -43, -44 dB. ЭК-*H*, отличающийся от рассматриваемого ЭК-L тем, что отверстия неметаллизированы, имеет такие экспериментальные и расчетные параметры: 4.19, 4.04 GHz и -22, -30 dB. При этом $\varepsilon_{eH} = 1.7, \ Z_H = 130 \,\Omega.$ Меньшее значение T_{\min} ЭК-L объясняется тем, что $\rho_L^{-1} = 3.2$ больше $\rho_H = 2.6$ и длина L-неоднородности намного ближе к четвертьволновой по сравнению с Н-неоднородностью (соответственно 0.9

Рис. 2. Характеристики коэффициента прохождения ЭК-L.

Рис. 3. Фильтр на основе *L*-неоднородностей: *I* — полосковый проводник, *2* — широкий полосковый отрезок, *3* — *L*-неоднородность.

Рис. 4. Амплитудно-частотные характеристики фильтра на основе *L*-неоднородностей.

и 0.6 от четвертьволновой длины). Уменьшение средней частоты ЭК-L обусловлено меньшей скоростью волны, поскольку $\varepsilon_{eL} > \varepsilon_{eH}$.

На рис. З приведен узкополосный фильтр на основе *L*-неоднородностей в виде несквозных круглых металлизированных отверстий в диэлектрике. Для снижения Z_L сигнальный проводник над неоднородностями имеет ширину, равную диаметру отверстий.

На рис. 4 приведены экспериментальная I и расчетная 2 амплитудно-частотные характеристики фильтра такой структуры. Параметры фильтра: ширина 13 mm, длина 42.2 mm, w = 1 mm, диаметр отверстий и ширина полоскового проводника над ними 7.5 mm, расстояние между неоднородностями 17.2 mm. Материал подложки — Rogers RO3010, h = 1.28 mm, h' = .65 mm, $\varepsilon = 10.2$, tg $\delta = 0.0023$ на частоте 10 GHz, толщина металлизации 0.035 mm, $Z_0 = 50 \Omega$. Согласно (1) и (2), $\varepsilon_{eL} = 8.8$, $Z_L = 8.4 \Omega$. Экспериментальные и расчетные значения средней частоты и вносимых потерь соответственно совпадают и равны 3.2 GHz и 1.5 dB; экспериментальные и расчетные значения по уровню -3 dB соответственно равны 0.18 и 0.15 GHz.

Низкоомные ЭК-неоднородности имеют более широкий диапазон волновых импедансов, чем высокоомные, что позволяет повысить развязку сигналов в устройствах на их основе. Для обеспечения максимального отношения импедансов разнородных областей ЭК представляет интерес совместное использование низко- и высокоомных неоднородностей.

Список литературы

- [1] Назарько А.И. и др. // ЖТФ. 2010. Т. 80. Вып. 4. С. 138–139.
- [2] *Назарько А.И.* и др. // ЖТФ. 2010. Т. 80. Вып. 10. С. 148–149.
- [3] Hong Jia-Shen G., Lancaster M.J. Microstrip filters for RF/microwave applications. NY: Wiley, 2001. 488 p.