06;12 Исследования фотопроводящих и фотодиэлектрических свойств гетероструктур из пленок поли-*N*-эпоксипропилкарбазола и МЕН-РРV с добавкой октабутилфталоцианина цинка

© Н.А. Давиденко,¹ С.В. Дехтяренко,¹ А.В. Козинец,¹ А.С. Лобач,² Е.В. Мокринская,¹ В.А. Скрышевский,¹ Н.Г. Спицына,² С.Л. Студзинский,¹ О.В. Третяк,¹ Л.С. Тонкопиева¹

 ¹ Киевский национальный университет им. Тараса Шевченко, 01601 Киев, Украина e-mail: daviden@ukrpack.net
 ² Институт проблем химической физики РАН, 142432 Черноголовка, Московская область, Россия

(Поступило в Редакцию 17 марта 2010 г.)

Получены гетероструктуры из пленок поли-*N*-эпоксипропилкарбазола и [2-метокси-5-(2'-этилгексилокси)-1,4-фенилен-винилена] с добавками 2,3,9,10,16,17,23,24-октабутилфталоцианина цинка. Исследованы фотопроводящие и фотодиэлектрические свойства гетероструктур в области поглощения металлокомплекса. Фоточувствительность исследованных образцов определяется триплетным состоянием фотогенерированных электронно-дырочных пар, их диссоциацией во внешнем электрическом поле и захватом носителей заряда на энергетические ловушки. Повышенная фоточувствительность гетероструктур по сравнению с монослоями пленок поясняется большей эффективностью диссоциации фотогенерированных электронно-дырочных пар и нивелированием ловушек для неравновесных носителей заряда на границах раздела пленок.

Введение

Органические материалы, используемые в фотовольтаических системах, многообразны по своей химической природе. Основной задачей многочисленных исследований в области химической фотоники в основном является создание молекулярных композиций ароматических и гетероароматических соединений, интенсивно поглощающих в области солнечного излучения. В последние годы разработаны фотовольтаические системы на основе богатых электронами фталоцианинов, а также синтезирован новый класс сопряженных полимеров, содержащих порфирин, пара-фенилен-винилен (PPV) и фуллереновые части [1–4]. Одним из наиболее распространенных материалов данного класса полимерных соединений является поли [2-метокси-5-(2-этилгексилокси)-1,4фенилен-винилен] (МЕН-РРV).

Длинноволновый край поглощения МЕН-РРV без специально введенных добавок находится вблизи длины волны света $\lambda \approx 600$ nm. Для смещения спектра фоточувствительности фотоэлектрических преобразователей в ближнюю инфракрасную (ИК) область создают пленки полимерных композитов (ППК) с добавками органических красителей или металлокомплексов [5–11]. Наличие в ППК ионов металлов увеличивает скорость синглет-триплетной конверсии в электронно-дырочных парах (ЭДП), которые образуются в результате внутреннего фотоэффекта [12–14]. Для геминальных ЭДП увеличение скорости спиновой конверсии приводит к возрастанию скорости диссоциации ЭДП на свободные носители тока.

Время жизни ЭДП, которые состоят из двух парамагнитных частиц с коррелированными спинами, может быть увеличено в случае фотогенерации ЭДП на границе раздела двух ППК с различающимися электроннодонорными свойствами. В последнем случае переход носителя заряда из одного слоя ППК к другому зависит от энергетического барьера между слоями и может уменьшить вероятность геминальной рекомбинации носителей заряда. Примером таких гетероструктур являются ППК на основе МЕН-РРV и карбазолилсодержащих полимеров или олигомеров (например, поли-*N*эпоксипропилкарбазол — PEPC), первый из которых обладает электронной и дырочной проводимостью, а второй — только дырочной проводимостью.

Ранее были изучены электропроводящие свойства гетероструктуры PEPC/PPV [15] и обнаружены некоторые интересные особенности, что связано с наличием разности потенциалов ионизации карбазольных фрагментов PEPC и молекул PPV. Однако фотопроводящие свойства гетероструктур на основе ППК PEPC и MEH-PPV с сенсибилизирующими добавками не исследованы.

Целью настоящей работы есть изучение фотопроводящих и фотодиэлектрических свойств гетероструктур на основе пленок РЕРС и МЕН-РРV с добавками 2, 3, 9, 10, 16, 17, 23, 24-октабутилфталоцианин цинка (Pc^{Bu}Zn), который является эффективным сенсибилизатором фотопроводимости ППК.

Образцы и методика эксперимента

Для приготовления образцов использовали PEPC, MEH-PPV и Pc^{Bu}Zn, структурные формулы молекул которых приведены ниже.

·Bu

И

Bu

Pc^{Bu}Zn

Образцы для иследований готовили в виде структур со свободной поверхностью:

(стеклянная подложка)/ППК, где ППК — (РЕРС, MEH-PPV, MEH-PPV + 3 mass.%Pc^{Bu}Zn, PEPC/MEH-PPV + 3 mass.% $Pc^{Bu}Zn$, MEH-PPV + 3 mass.% $Pc^{Bu}Zn/$ PEPC)

и сэндвич-структур: (стеклянная подложка)/ІТО/ППК/ где ППК — (MEH-PPV + 3 mass.% $Pc^{Bu}Zn$, Ag, $MEH-PPV + 3mass.\% Pc^{Bu}Zn/PEPC, PEPC/MEH-PPV +$ +3 mass.% Pc^{Bu}Zn); ITO — электропроводящий слой SnO₂: In₂O₃.

Гетероструктуры PEPC/MEH-PPV + 3 mass.% $Pc^{Bu}Zn$, MEH-PPV + 3 mass.% Pc^{Bu}Zn/PEPC готовили методом последовательного нанесения слоев соответствующих ППК из растворов на стеклянные подложки со слоем ІТО и их последовательного высушивания. Толщина слоев в гетероструктурах была одинакова, а общая толщина ППК составляла ~ 2.0 µm и ее измеряли с помощью интерференционного микроскопа.

В образцах со свободной поверхностью измеряли спектры оптической плотности (D) в диапазоне длин волн света $\lambda = 400-900$ nm. Образцы сэндвич-структуры использовали для измерений плотности тока до облучения светом и плотности фототока (j_1, j_2) во время и после облучения светом с длиной волны соответственно $\lambda_1 = 633, \lambda_2 = 337 \,\mathrm{nm}$ в зависимости от электрического напряжения U (соответственно — от напряженности электрического поля E), приложенного к электрическим контактам, полярности U, напряженности (H) внешнего магнитного поля, длительности времени (t) облучения и после выключения света. В качестве источника света для измерений *j*₁ использовали Не-Ne-лазер с мощностью излучения 15 mW, а для измерений j₂ — импульсный азотный лазер с длительностью импульса излучения 8 ns и мощностю в импульсе 20 mW.

Для исследования изменений *j*₁ в магнитном поле использовали электромагнит, величину Н между полюсами которого можно изменять в диапазоне 0-5.5 kOe. Рассчитывали относительную величину изменения j_1 под действием магнитного поля $\delta j_{1\max} = [j_{1\max}(H) - j_{1\max}(0)] / j_{1\max}(0),$ где $j_{1\max}(0)$ максимальное значение j_1 в отсутствие $H, j_{1 \max}(H)$ максимальное значение плотности этого фототока при наложении магнитного поля. Величину U изменяли в диапазоне 1-300 V. Кинетику тока регистрировали с помощью запоминающего осциллографа. В образцах сэндвич-структуры измеряли также зависимость тангенса угла диэлектрических потерь $(tg \delta)$ и электрической емкости (C) от частоты (f) синусоидального переменного электрического напряжения с амплитудным значением U = 1 - 30 V без облучения и при облучении светом из области поглощения Pc^{Bu}Zn. Величину f изменяли в диапазоне 80-2 · 10⁵ Hz. Из этих измерений рассчитывали величину

$$\Delta \operatorname{tg} \delta = rac{\operatorname{tg} \delta_{\mathrm{PH}} - \operatorname{tg} \delta_0}{\operatorname{tg} \delta_0}$$
 $\Delta C = rac{C_{PH} - C_0}{C_0},$

где tg δ_{PH} , C_{PH} и tg δ_0 , C_0 — соответственно значение тангенса угла диэлектрических потерь, емкости после включения и до включения монохроматического света с λ_1 . Все измерения проводили при комнатной температуре, которая соответствует условиям практического применения ППК.

Результаты и их обсуждение

В видимой области света пленки РЕРС не обладают собственным поглощением света, а пленки MEH-PPV характеризуются слабо выраженным максимумом поглощения вблизи $\lambda = 520$ nm. При наличии Pc^{Bu}Zn в ППК наблюдается полоса поглощения в ближней ИК области света (рис. 1), которая определяется поглощением молекул Pc^{Bu}Zn.

На рис. 2 приведены результаты измерений кинетики нарастания j_1 после начала облучения до квазистационарного значения $j_{1 \max}$, (a, b, c) а также зависимости $j_{1 \max}$ от *E*. В двойных логарифмических координатах графики этой зависимости могут быть аппроксимированы прямыми линиями, что

Рис. 1. Спектры поглощения пленок МЕН-РРV (1) и МЕН-PPV + 3 mass.% $Pc^{Bu}Zn$ (2).

позволяет описать ее аналитическим выражением $j_{1 \max} \propto E^{m_1}$. Из рис. 2 видно, что величина показателя степени $m_1 > 2$ и она не зависит от полярности U. Но значение $j_{1 \max}$ увеличивается при переходе от образцов ITO-MEH-PPV+3 mass.% Pc^{Bu}Zn-Ag к образцам ITO-MEH-PPV+3 mass.% Pc^{Bu}Zn/PEPC-Ag, ITO-PEPC/MEH-PPV+3 mass.% Pc^{Bu}Zn-Ag и в двух последних случаях существенно зависит от полярности U. Это означает, что фотопроводящие свойства гетероструктур исследуемых ППК, в отличие от образцов с MEH-PPV + 3 mass.% Pc^{Bu}Zn, являются чувствительными к полярности приложенного электрического напряжения. Более того, отрицательная полярность U на электроде ITO в образцах ITO–PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn–Ag обеспечивает не только увеличение $j_{1 \text{ max}}$ в рассматриваемом ряду IIIIK, но и уменьшает вклад замедленной составляющей фототока после начала и окончания облучения образцов светом с длиной волны λ_1 (рис. 2).

Так как приготовление образцов гетероструктур с ППК MEH-PPV + 3 mass.% $Pc^{Bu}Zn/PEPC$, PEPC/MEH-PPV + 3 mass.% $Pc^{Bu}Zn$ осуществлялось посредством полива растворов, то правомерен вопрос о возможности механического смешивания компонент PEPC и MEH-PPV + 3 mass.% $Pc^{Bu}Zn$ в гетероструктурах.

На рис. З представлены примеры кинетики фототока j_2 в зависимости от полярности U. Зарегистрировано увеличение амплитуды импульса переходного тока фотопроводимости в образцах с ІТО-РЕРС/ МЕН-PPV + 3 mass.% $Pc^{Bu}Zn - Ag$ при переходе от отрицательной к положительной полярности U на электроде ITO и отсутствие такого импульса в образцах c ITO-MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag, ITO-MEH-PPV+3 mass.% Pc^{Bu}Zn/PEPC-Ag. Ранее было установлено, что при облучении ультрафиолетовым (УФ) светом в слоях РЕРС происходит фотогенерация дырок с подвижностью $\sim 10^{-6}\,cm^2s^{-1}V^{-1}$, а в ППК на основе PPV — подвижность неравновесных носителей заряда $\sim 10^{-3}\,{
m cm}^2{
m s}^{-1}{
m V}^{-1}$. Так как нами был использован осциллограф с фронтом нарастания импульса переходного тока ~ 5 ns, то в экспериментах с образцами ITO-MEH-PPV + 3 mass.% Pc^{Bu}Zn/PEPC-Ag при ис-

Рис. 2. Зависимости lg $j_{1 \text{ max}} \propto \text{lg } E$ и $j_1/j_{1 \text{ max}} = f(t)$ (эпюры a-c) в образцах с ITO-MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag (1, 1', a); ITO-MEH-PPV + 3 mass.% Pc^{Bu}Zn/PEPC-Ag (2, 2', b); ITO-PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag (3, 3', c) при положительной (1-3) и отрицательной (1'-3') полярности U на электроде ITO. Кроме того, показаны изображения сечений исследуемых образцов. Интенсивность света 20 W/m². Момент выключения света на эпюрах a-c указан вериткальной стрелкой.

Журнал технической физики, 2011, том 81, вып. 2

106

Рис. 3. Кинетика фототока j_2 в образцах с ITO–РЕРС/МЕН-PPV + 3 mass.% Pc^{Bu}Zn–Ag (I, I', 2, 2') и ITO–МЕН-РРV + + 3 mass.% Pc^{Bu}Zn–Ag (3, 3') при отрицательной (I-3) и положительной (I'-3') полярности U на электроде ITO. При измерениях зависимостей 2, 2', 3, 3' частота импульсов азотного лазера была 100 Hz. Моменты включения и выключения света с λ_2 отмечены вертикальными стрелками.

пользовании импульсного лазера наблюдаются только квазистационарные токи фотопроводимости. Результат этих экспериментов есть подтверждение того, что в исследуемых образцах действительно образованы гетероструктуры PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn и MEH-PPV+3 mass.% Pc^{Bu}Zn/PEPC.

Для установления причины возрастания $j_{1 \max}$ при переходе от образцов с ITO-MEH-PPV + +3 mass.% Pc^{Bu}Zn-Ag к образцам с ITO-PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag исследованы особенности фотогенерации ЭДП и транспорта неравновесных носителй тока. На рис. 4 представлены зависимости $\delta j_{1 \max}(H)$. Быстрое увеличение $j_{1 \max}$ после включения магнитного поля (время изменения фототока магнитной соизмеримо co временем изменения индукции между полюсами электромагнита) и малое изменение $\delta j_{1 \max}$ для $H > 1 \, \mathrm{kOe}$ свидетельствует о том, что на первой стадии фотогенерации в основном образуются триплетные ЭДП [12–14]. При этом включение и выключение Н не влияет на ток электропроводности. Обычно ЭДП образуются в ППК из синглетных возбужденных состояний молекул красителей или родственных им соединений [11,16]. Однако наличие ионов металлов или других высокоспиновых способствовать частиц может

спиновой конверсии. Так как зависимости $\delta j_{1 \max}(H)$ мало отличаются для исследуемых ППК, то можно сделать вывод, что наличие гетероперехода в ППК для исследуемых образцов мало влияет на спиновое состояние ЭДП. После образовния подвижных носителей заряда в результате диссоциации долгоживущих ЭДП они (носители заряда) могут попасть на энергетические ловушки вблизи центров фотогенерации — молекул Рс^{Ви}Zn. Поэтому в кинетике тока проводимости после включения и выключения света наблюдается замедленная составляющая (рис. 2). Уменьшение доли замедленной составляющей в кинетике фототока при переходе от образцов с ITO-MEH-PPV + 3 mass.% $Pc^{Bu}Zn$ -Ag к образцам с ITO-PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag И при

Рис. 4. Зависимости $\delta j_{1 \max}(H)$ в образцах с ITO– MEH-PPV + 3 mass.% Pc^{Bu}Zn–Ag (1), ITO–MEH-PPV + + 3 mass.% Pc^{Bu}Zn/PEPC–Ag (2), ITO–PEPC/MEH-PPV + + 3 mass.% Pc^{Bu}Zn–Ag (3).

Рис. 5. Графики $\Delta tg \delta$, нормированные на максимальное значение $\Delta tg \delta_{max}$, в зависимости от времени после начала и окончания облучения светом с λ_1 в образцах с ITO-MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag (1, 1'), ITO-MEH-PPV + + 3 mass.% Pc^{Bu}Zn/PEPC-Ag (2), ITO-PEPC/MEH-PPV + + 3 mass.% Pc^{Bu}Zn-Ag (3, 3'). Момент выключения света отмечен вертикальной стрелкой. Графики 1' и 3' измерены соответственно в образцах с ITO-MEH-PPV + + 3 mass.% Pc^{Bu}Zn-Ag (1') и ITO-PEPC/MEH-PPV + + 3 mass.% Pc^{Bu}Zn-Ag (1') и ITO-PEPC/MEH-PPV + + 3 mass.% Pc^{Bu}Zn-Ag (1') и ITO-PEPC/MEH-PPV + + 3 mass.% Pc^{Bu}Zn-Ag (3') после их длительного облучения светом с λ_1 без приложения внешнего электрического напряжения и с закороченными электрическими контактами.

f, kHz

Рис. 6. Графики зависимости $\Delta \operatorname{tg} \delta$ (1-3) и ΔC (1'-3') от частоты f, измеренные в образцах с ITO-MEH-PPV+ + 3 mass.% Pc^{Bu}Zn-Ag (1, 1'), ITO-MEH-PPV+ + 3 mass.% Pc^{Bu}Zn/PEPC-Ag (2, 2'), ITO-PEPC/MEH-PPV+ + 3 mass.% Pc^{Bu}Zn-Ag (3, 3') после их длительного облучения светом с λ_1 .

отрицательной полярности *U* на электроде ITO можно пояснить отбором дырок с гетероперехода PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn в слой PEPC. Наличие энергетических ловушек для неравновесных носителей заряда и нивелирование их влияние гетеропереходом в ППК подтверждается результатами фотодиэлектрических исследований.

На рис. 5 представлены графики зависимости изменения tg δ , C под действием света и после его выключения. Особенностью этих исследований является то, что кинетика изменения tg δ_{PH} , C_{PH} не зависит от величины и полярности U, а также — увеличения tg δ , C при облучении светом без приложенного электрического напряжения (кривые I, I' на рис. 5). Последнее означает, что в ППК при облучении светом с λ_1 происходит фотогенерация и накопление электрических зарядов, время жизни которых значительно превосходит время жизни геминальных ЭДП.

На рис. 6 представлены зависимости $\Delta \operatorname{tg} \delta$ и ΔC от f, измеренные в образцах после их длительного облучения светом с λ_1 . Видно, что величина $\Delta \operatorname{tg} \delta$ и ΔC уменьшается при переходе от образцов с ITO-MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag к образцам с ITO-PEPC/MEH-PPV + 3 mass.% Pc^{Bu}Zn-Ag, и это может быть связано с влиянием гетероперехода на уменьшение заполнения энергетических ловушек.

Заключение

В образцах с ITO-PEPC/MEH-PPV + + 3 mass.% Pc^{Bu}Zn-Ag высокая фотопроводимость в области поглощения Pc^{Bu}Zn при отрицательной полярности электрического напряжения на электроде ITO обеспечивается несколькими факторами: триплетным состоянием фотогенерированных ЭДП; подвижностью дырок и электронов, что способствует диссоциации ЭДП в слое MEH-PPV + 3 mass.% $Pc^{Bu}Zn$; нивелированием влияния энергетических ловушек для дырок за счет их переходов из слоя MEH-PPV + + 3 mass.% $Pc^{Bu}Zn$ в транспортный слой PEPC. Подобные гетероструктуры могут быть использованы в фотовольтаических преобразователях солнечной энергии.

Список литературы

- [1] Huang C., Wang N., Li Y., Li C., Li J., Liu H., Zhu D. // Macromolecules. 2006. Vol. 39. P. 5319.
- [2] Braun D., Heeger A.J. // Appl. Phys. Lett. 1991. Vol. 58. P. 1982.
- [3] Yu G., Zhang C., Heeger A.J. // Appl. Phys. Lett. 1994. Vol. 64. N 12. P. 1540.
- [4] Sariciftci N.S., Braun D., Zhang C., Srdanov V.I., Heeger A.J., Stucky G., Wudl F. // Appl. Phys. Lett. 1993. Vol. 62. P. 585.
- [5] Yenger N.A., Harrison B., Duran R.S., Schanze K.S., Reynolds J.R. // Macromolecules. 2003. Vol. 36. N 24. P. 8978.
- [6] Мальцев Е.И., Брусенцева М.А., Румянцева В.Д., Лысенко Д.А., Берендяев В.И., Миронов А.Ф., Новиков С.В., Ванников А.В. // Высокомолекулярные соединения. 2006. Т. 48. № 2. С. 254.
- [7] Marletta A., Goncalves V., D'ebora T. // Brazilian J. Phys. 2004. Vol. 34. N 2B. P. 697.
- [8] Kumar A., Bhatnagar P.K., Mathur P.C., Tada K., Onoda M. // Appl. Surf. Sci. 2006. Vol. 252. P. 3953.
- [9] Kazukauskas V. // Semicond. Sci. Technol. 2004. Vol. 19. P. 1373.
- [10] Давиденко Н.А., Спицына Н.Г., Лобач А.С., Бреусова М.О., Томилова Л.Г., Якущенко И.К. // Теорет. и эксперим. химия. 2006. Т. 42. № 5. С. 271.
- [11] Давиденко Н.А., Ищенко А.А., Кувшинский Н.Г. Фотоника молекулярных полупроводниковых композитов на основе органических красителей. Киев: Наук. думка, 2005.
- [12] Бучаченко А.Л. // Успехи химии. 2003. Т. 72. № 5. С. 419.
- [13] Бучаченко А.Л., Бердинский В.Л. // Успехи химии. 2004. Т. 73. № 11. С. 1123.
- [14] Давиденко Н.А., Кувшинский Н.Г. // ФТТ. 1997. Т. 39. Вып. 6. С. 1020.
- [15] Алешин А.Н., Александрова Е.Л. // ФТТ. 2007. Т. 50. Вып. 10. С. 1895.
- [16] Теренин А.Н. Фотоника молекул красителей и родственных соединений. Л.: Наука, 1967.