02

Влияние химического состава на устойчивость YBa₂Cu₃O_y во влажной атмосфере

© И.Б. Бобылев, Н.А. Зюзева

Институт физики металлов УрО РАН, Екатеринбург, Россия E-mail: bobylev@imp.uran.ru

(Поступила в Редакцию 26 октября 2012 г.)

Исследовано влияние замещений иттрия и бария в YBa₂Cu₃O_y, а также легирования CeO₂, ZrO₂ и Pr₂O₃ на его способность поглощать воду из атмосферы отжига при $t = 200^{\circ}$ C. Усложнение химического состава соединений типа 123 приводит к повышению их устойчивости по отношению к агрессивным компонентам газовой фазы (H₂O, CO₂). Эти соединения имеют переменный состав как по кислороду, так и по воде и могут находиться в трех модификациях: упорядоченная по кислороду орто-фаза; разупорядоченная по кислороду тетра-фаза; псевдокубическая фаза с переменным количеством воды, которая при $t = 200^{\circ}$ C расслаивается на бедную кислородом, обогащенную водой фазу и богатую кислородом безводную фазу.

Работа частично поддержана проектом Президиума РАН № 12-П-2-1015.

1. Введение

В работах [1,2] было показано, что нестехиометрический по кислороду YBa₂Cu₃O_y (123) при $t \leq 300^{\circ}$ С не только претерпевает распад на фазы с различным содержанием кислорода, но и поглощает влагу из атмосферы отжига. При этом вода входит в структуру данного соединения. Методами ядерного магнитного резонанса, а также рентгеновской фотоэлектронной спектроскопии обнаружено присутствие OH⁻-группы в структуре 123 после обработки керамики при $t = 110-200^{\circ}$ С во влажной атмосфере [3,4]. Взаимодействие 123 с водой приводит к переходу как орто-, так и тетра-фазы в псевдокубическую фазу типа кубического перовскита (Ca₂TiO₄) [2], которая не обладает сверхпроводимостью [5].

Следует отметить, что для практического применения высокотемпературных сверхпроводников на основе соединений типа 123 низкая его химическая устойчивость по отношению к содержащимся в атмосфере воде и углекислому газу является отрицательным фактором [6]. С другой стороны, обработка высокотекстурированного YBa₂Cu₃O_{6.9} при $t = 200^{\circ}$ C во влажной атмосфере с последующим восстановлением при $t = 930^{\circ}$ C способствует улучшению его критических характеристик [7,8].

Согласно [9,10] в $YBa_2Cu_3O_y$ при взаимодействии с водой происходит образование дефектов упаковки типа $YBa_2Cu_4O_8$ (124) и аморфизация приграничных областей зерна. В [10] сделано предположение, что дефекты упаковки представляют собой встроенные дополнительные плоскости Cu-O, возникающие в результате расщепления медь-кислородных плоскостей, в которые встраиваются OH⁻-группы, а каждая вторая позиция Cu²⁺ является вакантной.

Ранее уже обращали внимание на то, что изменение химического состава влияет на способность соединений типа 123 взаимодействовать с водой. Было обнаружено, что керамика EuBa₂Cu₃O_y [11] и высокотекстурирован-

ная керамика $GdBa_2Cu_3O_y$ [12] значительно устойчивее по отношению к воздействию воды по сравнению с $YBa_2Cu_3O_y$.

В настоящей работе проведено исследование влияния замещений на способность соединений типа 123 взаимодействовать с парами воды, а также на изменение электрофизических свойств образцов, обработанных при $t = 200^{\circ}$ C во влажной атмосфере. Задачей исследования являлось также установление взаимосвязи между способностью поглощать воду и распадом на фазы с различным содержанием кислорода. Кроме того, поскольку при синтезе высокотекстурированной керамики из расплава эффективным в плане улучшения электрофизических свойств оказалось легирование CeO₂ и Pr₂O₃ [13,14], то нами было также исследовано влияние этих добавок, а также ZrO₂ на поглощение воды из атмосферы низкотемпературного отжига.

2. Методика

Для исследования были использованы однофазные по рентгеновским данным керамические образцы, полученные по стандартной технологии твердофазного синтеза (максимальная температура синтеза 930°С). Характерная величина зерна составляла 1-10 µm. Были исследованы серии образцов (Y,Eu)Ba₂Cu₃O_v и (Y,Nd)Ва₂Cu₃O_y, а также ряд других, составы которых приведены в табл. 1, 2. Образцы имели кислородный индекс у = 6.8 и 6.96. Концентрация кислорода задавалась в ходе отжигов при t = 500 и 400° C соответственно [15]. Низкотемпературную обработку проводили при $t = 200^{\circ}$ С в течение 100 h в атмосфере воздуха или аргона. Влажность атмосферы отжига была либо естественная (~70%), либо повышенная (атмосфера насыщена парами воды [1]). Содержание воды в образцах определяли методом гравиметрии (погрешность измерения массы ±0.005%).

Таблица 1. Поглощение воды образцами с кислородным индексом y = 6.96 после обработки при $t = 200^{\circ}$ С в течение 100 h в атмосфере, насыщенной парами воды

Состав (атмосфера термообработки)	Поглощение воды (wt.%)	j_c , A/cm ²
YBa ₂ Cu ₃ O _{6.96}	0.20	0
(Ar)	0.46	_
$Y_{0.95}Nd_{0.05}Ba_2Cu_3O_{6.96}$	0.1	-
Y _{0.5} Nd _{0.5} Ba ₂ Cu ₃ O _{6.96}	0.21	_
$Y_{0.95}Nd_{0.05}Ba_2Cu_3O_{6.96}$	0.15	_
YBa ₂ Cu ₃ O _{6.96} (2%Ce)	0.10	3
(Ar)	0.20	0
EuBa ₂ Cu ₃ O _{6.96}	0.09	-
(Ar)	0.37	0
YBa ₂ Cu ₃ O _{6.96} (2%Zr)	0.10	11
(Ar)	0.18	-
$Nd_{0.33}Eu_{0.33}Gd_{0.33}Ba_2Cu_3O_{6.96}$ (2%Zr)	0.05	_
Y _{0.33} Dy _{0.33} Ho _{0.33} Ba ₂ Cu ₃ O _{6.96} (2%Zr)	0.08	5

Таблица 2. Поглощение воды образцами с кислородным индексом y = 6.8 после обработки при $t = 200^{\circ}$ С в течение 100 h в атмосфере, насыщенной парами воды

Состав	Поглощение воды (wt.%)
Состав $YBa_2Cu_3O_{6.8}$ $Y_{0.8}Eu_{0.2}Ba_2Cu_3O_{6.8}$ $Y_{0.5}Eu_{0.5}Ba_2Cu_3O_{6.8}$ $EuBa_2Cu_3O_{6.8}$ $Y_{0.95}Nd_{0.5}Ba_2Cu_3O_{6.8}$ $Y_{0.5}Nd_{0.5}Ba_2Cu_3O_{6.8}$ $Y_{0.8}Gd_{0.2}Ba_2Cu_3O_{6.8}$ $Y_{0.8}Gd_{0.2}Ba_2Cu_3O_{6.8}$ $Y_{0.8}Dy_{0.2}Ba_2Cu_3O_{6.8}$ $Y_{0.8}Ho_{0.2}Ba_2Cu_3O_{6.8}$ $Y_{0.8}Ho_{0.2}Ba_2Cu_3O_{6.8}$ $Y_{0.8}Ho_{0.2}Ba_2Cu_3O_{6.8}$ $YBa_1.96Sr_{0.04}Cu_3O_{6.8}$ $Yd_{0.33}Eu_{0.33}Gd_{0.33}Ba_2Cu_3O_{6.8}$ $Y_{0.33}Dy_{0.33}Ho_{0.33}Ba_2Cu_3O_{6.8}$ $YBa_2Cu_3O_{6.8}$ (2%CeO ₂) $YBa_2Cu_3O_{6.8}$ (2%CrO ₂)	Поглощение воды (wt.%) 1.38 0.72 0.28 0.22 0.40 0.35 0.30 0.52 0.38 0.78 0.53 0.98 0.62 0.45 0.44 0.09 0.08 1.47
$\begin{array}{l} Nd_{0.33}Eu_{0.33}Gd_{0.33}Ba_{2}Cu_{3}O_{6.8}\\ (2\% ZrO_{2})\\ Y_{0.33}Dy_{0.33}Ho_{0.33}Ba_{2}Cu_{3}O_{6.8} \end{array}$	0.03
$(2\% ZrO_2)$	

Рентгеноструктурное исследование проводили на дифрактометре типа ДРОН-3М в медном излучении. Температурные зависимости магнитной восприимчивости были получены на СКВИД-магнитометре типа MPMS-XL-5 фирмы Quantum Design на частоте 80 Hz при амплитуде переменного поля 4 Ое. Критическую плотность тока измеряли стандартным четырехконтактным импульсным методом (погрешность измерений \pm 5%).

3. Результаты и обсуждение

В табл. 1 приведены результаты гравиметрического анализа поглощения воды после отжига соединений типа 123 при $t = 200^{\circ}$ С в течение 100 часов в атмосфере, насыщенной ее парами. Образцы с кислородным индексом у = 6.96 в окислительной атмосфере независимо от состава (за исключением сложных составов, легированных ZrO_2) поглощают ~ 0.15 \pm 0.05 wt.% воды. Однако насыщения за 100 h не происходит. Полученные результаты показывают, что при высоком содержании кислорода проникновение воды в структуру в ходе термообработки в окислительной атмосфере затруднено. Аналогичные отжиги в насыщенной водой атмосфере аргона приводят к увеличению поглощения воды до ~ 0.45 wt.%. Следует отметить, что определенный разброс значений для образцов с различным химическим составом в значительной мере обусловлен различиями в размере зерна, плотности и спеченности материала [1].

Соединения с более низким содержанием кислорода (y = 6.8) поглощают воду значительно сильнее (табл. 2). Однако при введении дополнительных элементов взаимодействие с ней снижается по сравнению с YBa₂Cu₃O_{6.8}. В случае замещения Y на Nd или Еи поглощение воды уменьшается по мере увеличения содержания замещающего элемента (рис. 1, табл. 2). Известно [13], что в отличие от YBa₂Cu₃O_{6.8} соединения типа 123 с лантаноидами подгруппы церия (Nd-Gd) являются внутренними твердыми растворами, в которых имеет место частичное взаимозамещение Ва и редкоземельного элемента (РЗЭ). Очевидно, что по мере замещения У на РЗЭ беспорядок в катионных подрешетках увеличивается. По данным гравиметрии при замене половины или более иттрия на европий поглощается в пять раз меньше воды по сравнению с YBa₂Cu₃O_{6.8} (табл. 2). Кроме того, наряду с YBa₂Cu₃O_{6.8} наиболее

Рис. 1. Зависимости поглощения воды (1) и параметра ромбичности (2) от степени замещения Y на Eu в системе $(Y,Eu)Ba_2Cu_3O_{6.8}$ после обработки при $t = 200^{\circ}C$ в атмосфере, насыщенной парами воды.

8

 $\overline{7}$

Relative intensity

Рис. 2. Фрагменты дифрактограмм соединений типа 123, обработанных при $t = 200^{\circ}$ С на воздухе в насыщенных парах воды: $1 - \text{YBa}_2\text{Cu}_3\text{O}_{6.8}$; $2 - \text{Y}_{0.8}\text{Ho}_{0.2}\text{Ba}_2\text{Cu}_3\text{O}_{6.8}$; $3 - \text{HoBa}_2\text{Cu}_3\text{O}_{6.8}$; $4 - \text{Y}_{0.8}\text{Eu}_{0.2}\text{Ba}_2\text{Cu}_3\text{O}_{6.8}$; $5 - \text{Y}_{0.5}\text{Eu}_{0.5}\text{Ba}_2\text{Cu}_3\text{O}_{6.8}$; $6 - \text{EuBa}_2\text{Cu}_3\text{O}_{6.8}$; $7 - \text{YBa}_{1.96}\text{Sr}_{0.04}\text{Cu}_3\text{O}_{6.8}$; $8 - \text{YBa}_2\text{Cu}_3\text{O}_{6.8}$ (CeO₂ 2%).

сильно поглощают воду $DyBa_2Cu_3O_{6.8}$ и $HoBa_2Cu_3O_{6.8}$. Причиной этого является то, что лантаноиды иттриевой подгруппы (Tb-Lu), также как и сам иттрий, не способны обмениваться местами с барием.

Согласно рентгенографическим данным, гидролитическое разложение керамики при t = 200°C во влажной атмосфере не происходит в отличие от обработки в воде при температурах, близких к комнатной [10]. На дифрактограммах отсутствуют линии, принадлежащие YBa2CuO5, CuO, BaCuO2 и BaCO3. Однако в области углов $2\theta = 30^{\circ}$ наблюдается гало [1,2], которое свидетельствует об образовании аморфной фазы в приграничных областях зерен [10]. Слияние линий 200-020-006, свидетельствующее о переходе соединения в псевдокубическую фазу [1], наблюдается только в тех случаях, когда имеет место значительное поглощение воды (> 0.5 wt.%) (рис. 2, табл. 2). Помимо YBa₂Cu₃O_{6.8}, это характерно для DyBa₂Cu₃O_{6.8} и HoBa₂Cu₃O_{6.8}, а также для составов с частичным замещением У или Ва. В остальных случаях имеет место лишь уменьшение ромбического искажения по сравнению с исходным состоянием, которое тем меньше, чем больше

степень замещения иттрия (рис. 1, 2). Из рис. 1 также видно, что изменение ромбического искажения решетки хорошо коррелирует с количеством поглощенной воды. Никаких изменений в положении и профилях линий 200–020–006, свидетельствующих о вхождении воды в структуру 123 и переходе его в псевдокубическую фазу, не наблюдается для NdBa₂Cu₃O_{6.8} и EuBa₂Cu₃O_{6.8} (рис. 2).

Результаты измерений магнитной восприимчивости показывают, что после обработки $YBa_2Cu_3O_{6.8}$ при $t = 200^{\circ}C$ в присутствии влаги диамагнитный отклик по сравнению с исходным состоянием резко падает, но при этом критическая температура (T_c) возрастает до 90 К [16] (рис. 3). Снижение диамагнитного отклика, а также резкое уменьшение максимума на зависимости $\chi'' = f(T)$ свидетельствуют об ухудшении сверхпроводимости вследствие гидролиза на межзеренных границах [17], а повышение T_c является следствием обогащения матричной фазы кислородом в процессе фазового распада [16]. Аналогичная обработка образцов с частичным замещением иттрия приводит как к более слабому уменьшению диамагнитного отклика, так и к

Рис. 3. Температурные зависимости магнитной восприимчивости $\chi'(a)$ и $\chi''(b)$ образцов, обработанных при $t = 200^{\circ}$ С в атмосфере с естественной влажностью: $I - YBa_2Cu_3O_{6.8}$, исходное состояние; $2 - YBa_2Cu_3O_{6.8}$; $3 - Y_{0.95}Eu_{0.05}Ba_2Cu_3O_{6.8}$; $4 - Y_{0.8}Eu_{0.2}Ba_2Cu_3O_{6.8}$; $5 - EuBa_2Cu_3O_{6.8}$.

Рис. 4. Температурные зависимости магнитной восприимчивости $\chi'(a)$ и $\chi''(b)$ образцов, обработанных при $t = 200^{\circ}$ С в атмосфере, насыщенной парами воды: $I - \text{YBa}_2\text{Cu}_3\text{O}_{6.8}$; $2 - \text{EuBa}_2\text{Cu}_3\text{O}_{6.8}$; $3 - \text{YBa}_2\text{Cu}_3\text{O}_{6.8}$ (CeO₂ 2%).

меньшему возрастанию T_c . Это может свидетельствовать как об уменьшении поглощения керамикой паров воды, так и о более медленном протекании распада. При этом переход зерна в сверхпроводящее состояние является более крутым, что может указывать на упорядочение кислорода в теле зерна в ходе низкотемпературной обработки (рис. 3, кривые 3–5). Аналогичная обработка в атмосфере, насыщенной парами воды, приводит к более сильной деградации сверхпроводящих свойств. При этом наибольшую устойчивость к воздействию воды проявляют материалы, легированные CeO₂ и ZrO₂ (рис. 4).

Причиной снижения поглощения воды при усложнении химического состава могут быть как кинетический, так и термодинамический факторы. Согласно [11], в NdBa₂Cu₃O_{7- δ} вследствие взаимозамещения Nd и Ba из-за частичного разупорядочения кислорода между позициями O₁ и O₅ проникновение воды в структуру вдоль оси *b* по каналам кислородных вакансий типа O₅ затруднено.

С другой стороны, влияние замещений на поглощение воды может быть связано с увеличением конфигурационной энтропии, что приводит к снижению свободной энергии образования соединения и, согласно уравнению Вант—Гоффа, к уменьшению его реакционной способности, в том числе в реакции с водой. Если иттрий замещается на элемент из подгруппы церия, то свободная энергия образования понижена как за счет собственно проведенного замещения, так и за счет взаимозамещения Ва и РЗЭ. Поэтому вода должна поглощаться меньше, чем в YBa₂Cu₃O_{6.8}, что и наблюдается для EuBa₂Cu₃O_{6.8} и NdBa₂Cu₃O_{6.8}, а также при частичном замещении иттрия или бария (табл. 2).

Как отмечено выше, взаимодействие с водой приводит к образованию дефектов упаковки типа 124 и к переходу YBa₂Cu₃O_v в псевдокубическую фазу. Аналогичные дефекты образуются и в процессе синтеза [18,19]. Но они встречаются редко, т. к. их образование термодинамически невыгодно. Поэтому, как правило, они возникают только за счет деформации (например, нагрев-охлаждение) [20]. Если же в структуру входит вода, то образование таких дефектов энергетически выгодно, т. к. в систему вводится новый компонент — ОН-группа. В данном случае понижение энергии Гиббса при образовании дефектов упаковки возникает вследствие дополнительного энтропийного вклада за счет перестановок O²⁻ и OH⁻ в анионной подрешетке. Снижение свободной энергии образования вследствие замещений, по-видимому, препятствует образованию дефектов упаковки. В согласии с этим рентгеноструктурные данные (рис. 2), а также данные электронной микроскопии показывают, что в EuBa₂Cu₃O_{6.8} и NdBa₂Cu₃O_{6.8} после отжига во влажной атмосфере дефекты упаковки не образуются, о чем говорит отсутствие перехода их в псевдокубическую фазу и сохранение двойниковой структуры [21].

Если же иттрий частично замещается на лантаноид подгруппы иттрия, то вода также меньше поглощается, чем соединениями $YBa_2Cu_3O_{6.8}$, $DyBa_2Cu_3O_{6.8}$ и $HoBa_2Cu_3O_{6.8}$ (табл. 2), так как свободная энергия образования тоже уменьшается. Аналогичным образом влияет и частичное замещение Ва на Sr, которое также заметно снижает способность 123 к взаимодействию с парами воды.

Следует отметить очень слабое поглощение воды при легировании 123 малыми количествами CeO_2 и ZrO_2 (табл. 2). В этом случае причиной блокирования проникновения воды в структуру может быть избыточный кислород, привносимый с легирующим оксидом, который размещается в позициях O_5 . Это связано с тем, что Се и Zr находятся в степени окисления IV [22,23]. В отличие от CeO₂ и ZrO₂ легирование Pr_2O_3 не оказывает такого эффекта (табл. 2), т.к. празеодим находится в степени окисления III [14].

На основании полученных результатов можно сделать вывод, что гидролитическое разложение и образование аморфной фазы в приграничных областях зерна возможно только при проникновении воды в структуру 123. В противном случае гидролиз наблюдается только на межзеренных границах. Об этом свидетельствуют результаты измерений критической плотности тока, согласно которым ненулевые значения j_c присущи только образцам, наиболее слабо взаимодействующим с водой (табл. 1).

В зависимости от отсутствия или наличия воды в атмосфере отжига распад на фазы с различным содержанием кислорода происходит по разным схемам. В отсутствие паров воды распад при $t = 200^{\circ}$ С приводит только к перераспределению кислорода и идет медленнее изза относительно низкой его подвижности. При этом переход в псевдокубическую фазу не наблюдается [24].

В присутствии воды в атмосфере отжига проникновение ее в структуру проходит через стадию диссоциации на поверхности зерна [10]

$$\Box_0 + \mathrm{O}^{2-} + \mathrm{H}_2\mathrm{O} = 2\mathrm{OH}^-$$

(По — кислородная вакансия) с последующей диффузией по кислородным вакансиям типа О₅ [11]. Коэффициент диффузии ОН--группы выше, чем у ионов кислорода вследствие меньшего радиуса и заряда гидроксид-иона, что должно приводить к ускорению фазового расслоения [2]. В этом случае наблюдается переход в псевдокубическую фазу вследствие разупорядочения катионов, т.к. образование дефектов структуры приводит к смещению атомов из их положения с минимальной потенциальной энергией [25]. Причиной разупорядочения Ва и У, вероятно, являются напряжения, возникающие вокруг образовавшихся структурных дефектов [26]. Кроме катионного разупорядочения имеет место и анионное, что ведет к потере сверхпроводимости. О кислородном разупорядочении свидетельствует поведение параметров а и b, аналогичное тому, которое наблюдается при переходе из орто- в тетрафазу (а — возрастает, b падает).

Согласно данным химического анализа, при поглощении влаги в соединении $YBa_2Cu_3O_y$ количество меди в состоянии Cu(III) не изменяется [1]. Следовательно, поглощение воды должно приводить к переходу $YBa_2Cu_3O_y$ в оксид-гидроксид. В этом случае фазовый распад происходит на бедную кислородом и обогащенную водой фазу и богатую кислородом безводную фазу по следующей схеме

$$\begin{split} & 2YBa_2Cu_3O_{7-(\delta+x)} + 2(\delta+x)H_2O \\ & \rightarrow 2YBa_2Cu_3O_{7-2(\delta+x)}(OH)_{2(\delta+x)} \\ & \rightarrow YBa_2Cu_3O_{7-4(\delta+x)}(OH)_{4(\delta+x)} + YBa_2Cu_3O_7. \end{split}$$

Проведенные ранее электронно-микроскопические исследования показали, что после обработки монокристаллов с кислородным индексом y = 6.8 при $t = 200^{\circ}$ С во влажной атмосфере в плоскости *ab* наблюдается выделение частиц [26], в то время как в перпендикулярном направлении были обнаружены пакеты дефектов упаковки [27]. Размеры частиц и дефектов упаковки сопоставимы (5–10 nm). По-видимому, наблюдавшиеся частицы и пакеты дефектов упаковки — это одни и те же нарушения структуры, которые образуются при протекании приведенной выше реакции.

В [5,28] было показано, что после обработки в инертной атмосфере в присутствии влаги $YBa_2Cu_3O_{6.96}$ также переходит в псевдокубическую фазу. Согласно магнитометрическим измерениям, при этом резко падал диамагнитный отклик (особенно в атмосфере гелия), однако T_c практически не изменялась [29]. По-видимому, протон OH⁻-групп из позиций O₅ способен перескакивать в другие позиции, в том числе в O₂ и O₃, что приводит к образованию OH⁻-групп в Cu–O плоскостях и к расщеплению их в том числе и в материалах с кислородным индексом $y \sim 7$.

Как было показано выше, замена окислительной атмосферы на инертную заметно усиливает способность к поглощению воды для образцов с высоким кислородным индексом ($y \sim 7$) (табл. 1). По-видимому, это связано с тем, что инертные газы, в отличие от кислорода, практически не адсорбируются на поверхности кристаллита [30] и не являются барьером для адсорбции воды, что облегчает ее проникновение в структуру 123. Впрочем, это не касается материалов, легированных CeO₂ и ZrO₂. Вероятно, характер атмосферы не влияет на способность воды внедряться в структуру, когда в каналах кислородных вакансий типа O₅ находятся дополнительные ионы кислорода, связанные с присутствием CeO₂ или ZrO₂ и препятствующие проникновению воды.

4. Выводы

1. Взаимодействие соединений типа 123 с парами воды существенно зависит от их химического состава. Замещение Y или Ba, а также легирование CeO₂ и ZrO₂ затрудняет поглощение воды. Замещения иттрия на лантаноиды подгруппы церия приводят к большей устойчивости по отношению к поглощению воды, чем замещения на лантаноиды подгруппы иттрия. Причиной повышения химической устойчивости являются кинетический и термодинамический факторы. Влияние легирования существенно зависит от степени окисления элемента, вводимого в структуру. Легирование оксидами церия или циркония эффективно подавляет поглощение воды, а следовательно, и последующее взаимодействие 123 с CO₂, что имеет существенное значение для технологии получения более качественных ВТСП-материалов.

2. Соединения типа 123 имеют переменный состав не только по кислороду, но и по воде. В зависимости от условий отжига они могут находиться в трех модификациях: упорядоченная по кислороду орто-фаза; разупорядоченная по кислороду тетра-фаза; псевдокубическая фаза с переменным количеством кислорода и воды, разупорядоченная по иттрию, барию и кислороду.

3. Фазовый распад при низкотемпературном отжиге соединений типа 123 в отсутствие влаги идет на фазы с различным содержанием кислорода, а с участием воды — на бедную кислородом обогащенную водой фазу и богатую кислородом безводную фазу.

Авторы выражают благодарность сотрудникам центра коллективного пользования ИФМ УрО РАН А.В. Королеву за проведение измерений магнитной восприимчивости, а также В.А. Сазоновой и М.В. Чунтоновой за проведение рентгенографических измерений исследованных образцов.

Список литературы

- [1] И.Б. Бобылев, Н.А. Зюзева. ФММ 112, 134 (2011).
- [2] Н.А. Зюзева, И.Б. Бобылев, Е.П. Романов. Материаловедение 5, 18 (2011).
- [3] A.V. Dooglav, A.V. Egorov, I.R. Mukhamedshin, A.V. Savincov, H. Alloul, J. Bobroff, W.A. MacFarlane, P. Mendels, G. Collin, N. Blanchard, P.G. Picard, J.C. King, J. Lord. Phys. Rev. B 70, 054506-1 (2004).
- [4] С.В. Сударева, М.В. Кузнецов, Е.И. Кузнецова, Ю.В. Блинова, Е.П. Романов, И.Б. Бобылев. ФММ 108, 602 (2009).
- [5] И.Б. Бобылев, Н.А. Зюзева, С.В. Сударева, Е.П. Романов. ФММ 103, 420 (2007).
- [6] J.P. Zhou, J.T. McDevitt. Solid State Commun. 86, 11 (1993).
- [7] И.Б. Бобылев, Е.Г. Герасимов, Н.А. Зюзева. ФТТ 54, 1633 (2012).
- [8] И.Б. Бобылев, Е.Г. Герасимов, Н.А. Зюзева. ЖЭТФ 142, 535 (2012).
- [9] H.W. Zandberger, R. Gronsky, G. Thomas. J. Microsc. Spectrosc. Electron 13, 307 (1988).
- [10] Zhao Rupeng, M.J. Goringe, S. Myhra, P.S. Turner. Philosophical Mag. A 66, 491 (1992).
- [11] B. Schougaard Steen, F. Ali Mehnaaz, T. McDevitt John. Appl. Phys. Lett. 84, 1144 (2004).
- [12] S. Nariki, M. Murakami. Physica C 378-381, 769 (2002).
- [13] Ю.Д. Третьяков, Е.А. Гудилин. Успехи химии 69, 3 (2000).
- [14] П.Е. Казин, Ю.Д. Третьяков. Успехи химии 72, 960 (2003).
- [15] И.Б. Бобылев, Н.А. Зюзева, С.В. Сударева, Т.П. Криницина, Л.Н. Кузьминых, Ю.В. Блинова, Е.П. Романов. ФММ 102, 550 (2006).
- [16] И.Б. Бобылев, С.В. Сударева, Н.А. Зюзева, Т.П. Криницина, А.В. Королев, Ю.В. Блинова, Е.П. Романов. ФММ 98, 59 (2004).
- [17] Е.З. Мейлихов. СФХТ 2, 5 (1989).
- [18] Е.З. Мейлихов. УФН 163, 27 (1993).
- [19] G. Van Tendeloo, H.W. Zandberger, T. Okabe, S. Amelinckx. Solid State Commun. 63, 969 (1987).
- [20] А. Вест. Химия твердого тела. Мир, М. (1988). 1, 555 с.
- [21] Ю.В. Блинова, Е.И. Кузнецова, И.Б. Бобылев, Т.П. Криницина, Е.П. Романов, С.В. Сударева. В кн.: Проблемы нанокристаллических материалов. Екатеринбург (2002). С. 270.
- [22] S. Marinel, I. Monot, J.G. Desgardin. Supercond. Sci. Technol. 11, 563 (1998).
- [23] М.И. Петров, Д.А. Балаев, Ю.С. Гохфельд, Ю.С. Дубровский, К.А. Шайхутдинов. ФТТ 49, 1953 (2007).
- [24] С.Г. Титова, Ю.В. Блинова, С.В. Сударева, И.Б. Бобылев, Н.А. Зюзева. ФТТ **53**, 427 (2011).
- [25] Физика электролитов / Под ред. Дж. Хладика. Мир, М. (1978). 555 с.

- [26] S.V. Sudareva, E.I. Kusnetsova, T.P. Krinitsina, I.B. Bobylev, E.P. Romanov. Physica C 331, 263 (2000).
- [27] С.В. Сударева, Е.П. Романов, Т.П. Криницина, Е.И. Кузнецова, Ю.В. Блинова, И.Б. Бобылев, Н.А. Зюзева, А.М. Бурханов. ФММ **106**, 378 (2008).
- [28] И.Б. Бобылев, Е.И. Кузнецова, Н.А. Зюзева, Т.П. Криницина, С.В. Сударева, Е.П. Романов. ФММ **110**, 396 (2010).
- [29] И.Б. Бобылев, Н.А. Зюзева, Е.П. Романов. ФММ 106, 294 (2008).
- [30] С. Грег, К. Синг. Адсорбция, удельная поверхность, пористость. Мир, М. (1984). 306 с.