## 02,13

# Электромагнитные волны с отрицательной групповой скоростью в случайно-неоднородном джозефсоновском переходе

#### © Ю.И. Маньков

Институт физики им. Л. В. Киренского СО РАН, Красноярск, Россия E-mail: mankov@iph.krasn.ru

#### (Поступила в Редакцию 8 октября 2012 г.)

Методом усредненных функций Грина исследованы электромагнитные волны в случайно-неоднородном джозефсоновском переходе при немонотонном спаде корреляций неоднородностей. Изучены модификация спектра и затухание этих возбуждений, обусловленные пространственными флуктуациями критического тока джозефсоновского перехода. Определены области значений частоты, волнового числа и стохастических параметров среды, при которых волны имеют отрицательную групповую скорость.

#### 1. Введение

В последнее время интенсивно проводятся экспериментальные исследования [1-3] распространения импульсов света с отрицательной групповой скоростью в различных оптических средах. Это явление помимо фундаментального [4-6] может иметь и практическое значение для создания на его основе средств управления сигналом [2]. Достижения в оптике стимулировали поиск материалов, в которых свойственные им возбуждения обладают отрицательной групповой скоростью. Рассматриваются сплошные среды, в которых возможно распространение с отрицательной групповой скоростью акустических [7-9] и спиновых [10,11] волн, а также экситонов и поляритонов [12]. В работе [13] предсказано существование солитонов с отрицательной групповой скоростью в одномерных массивах "малых" джозефсоновских переходов.

Помимо солитонов в джозефсоновских переходах существуют коллективные электромагнитные плазменноподобные возбуждения (джозефсоновские плазменные волны), исследованию которых уделяется большое внимание [14]. Частота этих возбуждений в ряде сверхпроводящих материалов и структур составляет от сотен гигагерц до десятка террагерц. Этот важный во многих отношениях диапазон частот электромагнитного излучения, привлекающий внимание специалистов в области физики твердого тела, физики высоких энергий, биологии и медицины, является промежуточным между микроволновой и инфракрасной областями спектра и потому мало доступен для традиционных устройств генерации и приема сигнала, что делает джозефсоновские плазменные волны перспективными для освоения указанного частотного интервала [15]. Толщина джозефсоновских переходов обычно не превышает нескольких нанометров, поэтому на них особенно сильно сказывается влияние различных неоднородностей, которые носят в основном случайный характер. Такие неоднородности могут быть обусловлены, например, пространственным изменением толщины и состава диэлектрического слоя, неоднородностью берегов контакта и т.д. Влияние случайных неоднородностей на солитоны (флаксоны) в джозефсоновском переходе исследовалось в работе [16], где была предложена модель, согласно которой неоднородности геометрических и физических параметров перехода проявляются в пространственных флуктуациях его критического тока. Эта же модель использовалась в работе [17] для изучения джозефсоновских плазменных волн в переходе с одномерными случайными неоднородностями при экспоненциальном и монотонном спаде их корреляций.

Настоящая работа посвящена исследованию электромагнитных волн в случайно-неоднородном джозефсоновском переходе при немонотонном спаде корреляций неоднородностей. Показано, что такие корреляционные свойства пространственных флуктуаций перехода приводят к минимуму в спектре волн при ненулевом значении волнового числа и возможности распространения возбуждений с отрицательной групповой скоростью.

### 2. Модель и волновое уравнение

Рассмотрим два одинаковых сверхпроводника, разделенных тонким диэлектрическим слоем толщиной w, который расположен в координатной плоскости xy. Начало отсчета вдоль оси z, перпендикулярной плоскости контакта сверхпроводников, выбрано в центре слоя. При длине когерентности сверхпроводника, много большей w, через контакт течет электрический джозефсоновский ток  $j_z = j_c \sin \varphi$ , где  $j_c$  — критический ток джозефсоновского перехода,  $\varphi$  — разность фаз волновых функций сверхпроводящих электронов между берегами перехода. Известно [18,19], что разность фаз в однородном джозефсоновском переходе при отсутствии в нем потерь описывается уравнением

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} - \frac{1}{c_0^2} \frac{\partial^2 \varphi}{\partial t^2} = \frac{\sin \varphi}{\lambda_J^2}.$$
 (1)

Здесь t — время,  $c_0 = c\sqrt{w/\varepsilon d}$  — скорость распространения электромагнитных волн в переходе (скорость Свихарта), c — скорость света в вакууме,  $\varepsilon$  — диэлектрическая проницаемость перехода,  $d = w + 2\lambda$ , где  $\lambda$  — глубина проникновения магнитного поля в сверхпроводник,  $\lambda_J$  — джозефсоновская глубина проникновения. В дальнейшем будем рассматривать "большой" джозефсоновский переход:  $L_x$ ,  $L_y \gg \lambda_J$ , где  $L_x$ ,  $L_y$ ,  $L_z$  размеры образца в направлениях соответствующих осей координат; объем образца  $V = L_x L_y L_z$ .

В случайно-неоднородном джозефсоновском переходе физические величины в уравнении (1) являются случайными функциями координат. Чтобы упростить модель, следуя работе [16], будем предполагать, что скорость  $c_0$  однородна, а флуктуирует джозефсоновская глубина проникновения

$$\lambda_J^{-2}(\mathbf{x}) = \lambda_J^{-2}[1 + \gamma \rho(\mathbf{x})], \qquad (2)$$

где  $\rho(\mathbf{x})$  — статистически однородная случайная функция, центрированная ( $\langle \rho \rangle = 0$ ) и нормированная ( $\langle \rho^2 \rangle = 1$ ). Угловые скобки обозначают усреднение по ансамблю реализаций случайной функции  $\rho(\mathbf{x})$ ;  $\mathbf{x} = \{x, y, z\}; \gamma$  — относительная среднеквадратичная флуктуация критического тока,  $0 \le \gamma < 1$ . Используя в уравнении (1) формулу (2), полагая  $\varphi \ll 1$  и проводя преобразование Фурье по времени, получим

$$\frac{\partial^2 \varphi(\omega, \mathbf{x})}{\partial x^2} + \frac{\partial^2 \varphi(\omega, \mathbf{x})}{\partial y^2} + [\nu - \eta \rho(\mathbf{x})] \varphi(\omega, \mathbf{x}) = 0, \quad (3)$$

где  $v = (\omega^2 - \omega_J^2)/c_0^2$ ;  $\omega$  — частота волны,  $\omega_J = c_0/\lambda_J$  — джозефсоновская плазменная частота;  $\eta = \gamma/\lambda_J^2$ ;  $\varphi \sim \exp[i(\mathbf{kx} - \omega t)]$ ;  $\mathbf{k} = \{k_x, k_y\}$ . В однородном переходе ( $\gamma = 0$ ) из выражения (3) следует

$$\nu(k) = k^2, \tag{4}$$

отсюда для спектра волн получаем формулу

$$\omega = \sqrt{\omega_J^2 + c_0^2 k^2},\tag{5}$$

согласно которой групповая скорость  $v_{g0} = d\omega/dk$  имеет вид

$$v_{g0} = \frac{kc_0^2}{\omega}.$$
 (6)

Чтобы исследовать джозефсоновские плазменные волны в случайно-неоднородном переходе ( $\gamma \neq 0$ ), воспользуемся приближением Крейчнана [20], позволяющим учесть многократное рассеяние волн на неоднородностях, которое известно также как самосогласованное приближение [21]. Простая формулировка этого приближения предложена в [22]. Согласно подходу, изложенному в этих работах, образ Фурье усредненной функции Грина, соответствующей уравнению (3), имеет вид

$$\overline{G}(\mathbf{k},\nu) = \frac{(2\pi)^{-3}}{\nu - k^2 - \Sigma(\mathbf{k},\nu)},\tag{7}$$

где массовый оператор  $\Sigma({\bf k}, \nu)$  подчиняется интегральному уравнению

$$\Sigma(\mathbf{k},\nu) = \eta^2 \int \frac{S(\mathbf{k}-\mathbf{k}_1)d\mathbf{k}_1}{\nu-k_1^2 - \Sigma(\mathbf{k}_1,\nu)}.$$
 (8)

Здесь S(**k**) — спектральная плотность, связанная преобразованием Фурье с корреляционной функцией неоднородностей  $K_{\rho}(\mathbf{r}) = \langle \rho(\mathbf{x})\rho(\mathbf{x} + \mathbf{r}) \rangle$ ;  $k_1 = |\mathbf{k}_1|$ .

Рассмотрим джозефсоновский переход со случайными неоднородностями, обладающими немонотонным спадом корреляций. Для описания таких неоднородностей будем использовать корреляционную функцию и спектральную плотность в виде

$$K_{\rho}(\mathbf{r}) = \left(1 - \frac{rk_c}{3}\right)e^{-k_c r}, \quad S(\mathbf{k}) = \frac{4k^2k_c}{3\pi^2(k_c^2 + k^2)^3}, \quad (9)$$

где  $k_c$  — корреляционное волновое число неоднородностей;  $r = |\mathbf{r}|, k = |\mathbf{k}|$ . Функция  $\rho(\mathbf{x})$  и спад корреляций предполагаются достаточно плавными (корреляционный радиус  $r_c = 1/k_c \gg a_0$ , где  $a_0$  — межатомное расстояние). Выражение (9) описывает немонотонный спад корреляций неоднородностей, который предполагает наличие локальных корреляций между положительными и отрицательными флуктуациями [23], приводящих к равенству  $\int \rho(\mathbf{x}) d\mathbf{x} = 0$ , где  $V_0$  — малый локальный объем. Из этого условия для корреляционной функции следует  $\int K(\mathbf{x})dx = 0$ , откуда имеем S(0) = 0. Представление о немонотонном спаде корреляций широко используется при исследовании случайно-неоднородных материалов (см., например, [23-28]). В работе [28] во втором порядке теории возмущений показана возможность аномальной дисперсии объемных плазменных волн в проводнике с пространственными флуктуациями решеточного потенциала, корреляционные свойства которых описываются функциями (9). Такими корреляциями обладают неоднородности с выраженным средним размером, пропорциональным r<sub>c</sub> (спектральная плотность в (9) имеет максимум при  $k = k_s \equiv k_c/\sqrt{2}$ ). В частности, немонотонный спад корреляций предполагает отсутствие однородных реализаций в ансамбле случайных функций. Известны также временные флуктуации, спектральная плотность которых  $S(\omega)$  обращается в нуль не только при  $\omega \to \infty$ , но и при  $\omega \to 0$ , получившие название "зеленый шум". Его влияние исследовалось [29], в том числе, на джозефсоновские переходы.

#### 3. Спектр и групповая скорость волн

Используя выражение (9) для спектральной плотности в интегральном уравнении (8) и полагая, что в подынтегральном выражении этого уравнения массовый оператор зависит только от  $|\mathbf{k}_1|$ , найдем его численное решение, подставляя которое в формулу (7), определим зависимости положения  $\nu_m$  и ширины  $\Delta \nu$  пика функции



**Рис. 1.** *а*) Спектр  $\nu'$  джозефсоновских плазменных волн и положение  $\nu_m$  пика функции  $\overline{G}''(k, \nu)$ :  $Q = (\nu_m - k^2)/\eta$  (точки),  $Q = (\nu' - k^2)/\eta$  (линии). *b*) Затухание  $\nu''$  волны и ширина  $\Delta \nu$  пика функции  $\overline{G}''(k, \nu)$ :  $R = \Delta \nu/\eta$  (точки),  $R = 2\nu''/\eta$  (линии). Квадраты и кружки (определяются формулами (7) и (8)), а также сплошные и штриховые кривые (задаются выражением (14)) построены при  $k_c/\sqrt{\eta} = 1$  и 0.5 соответственно.

 $\overline{G}''(k, v) = \operatorname{Im} \overline{G}(k, v)$  от k. Функции  $v_m(k)$  и  $\Delta v(k)$  показаны на рис. 1, a и b соответственно. В частности, рис. 1, a демонстрирует смещение пика  $\overline{G}''(k, v)$  в область меньших частот ( $v_m - k^2 < 0$ ) по сравнению с его положением в однородной среде, которое отображает-

Ю.И. Маньков

ся прямой линией Q = 0. Значение  $|v_m - k^2|$  наиболее велико в области  $k \leq \sqrt{\eta}$ , где получена немонотонная зависимость разности  $v_m - k^2$  от k (квадраты), характерная для  $k_c \gtrsim \sqrt{\eta}$ . При  $k_c < \sqrt{\eta}$  разность  $\nu_m - k^2$ монотонно возрастает с увеличением k (кружки). Поразному в зависимости от  $k_c$  ведет себя и ширина  $\Delta v$ пика  $\overline{G}''(k, \nu)$ , которая вычислялась на половине его высоты. Это иллюстрируют на рис. 1, в последовательности точек, полученные при разных значениях k<sub>c</sub>. Так, для всех  $k_c \gtrsim \sqrt{\eta}$  функция  $\Delta \nu(k)$  стремится к нулю при  $k \to 0$  (квадраты), в то время как при  $k_c < \sqrt{\eta}$  она остается конечной (кружки). Последнее обусловлено тем, что в ширину пика, вычисленную в самосогласованном приближении, вносит вклад неоднородное (флуктуационное) уширение, которое определяется стохастическим разбросом резонансных частот.

Спектр джозефсоновских плазменных волн будем определять в области значений стохастических параметров перехода  $k_c \gtrsim \sqrt{\eta}$ . При таких  $k_c$  и  $\eta$  в знаменателе подынтегрального выражения в правой части уравнения (8) можно использовать приближение  $\Sigma(\mathbf{k}_1, \nu) = \Sigma(k, \nu)$ , предложенное в работе [22]. Указанная замена допустима [30], если справедливы неравенства

$$\left|\frac{d\Sigma(k,\nu)}{dk}\right| \ll 2k, \quad \left|\frac{d^2\Sigma(k,\nu)}{dk^2}\right| \ll 2.$$
(10)

Действительно, из разложения знаменателя подынтегрального выражения уравнения (8) в окрестности точки  $k_1 = k$  в степенной ряд

$$\nu - k_1^2 - \Sigma(k_1, \nu) = g - \left[2k + \frac{d\Sigma(k, \nu)}{dk}\right](k - k_1) - \left[1 + \frac{1}{2}\frac{d^2\Sigma(k, \nu)}{dk^2}\right](k - k_1)^2 - \dots$$
(11)

при сохранении в нем первых трех членов и выполнении неравенств (10) следует

$$\nu - k_1^2 - \Sigma(k_1, \nu) \approx \nu - k_1^2 - \Sigma(k, \nu).$$
 (12)

В выражении (11)  $g = v - k^2 - \Sigma(k, v)$  — знаменатель функции Грина (7). Для джозефсоновских плазменных волн неравенства (10) выполняются при  $k_c > k_{c1} \approx 0.7\sqrt{\eta}$  и  $k < k_c/2$ , а также при  $k \gg \sqrt{\eta}$  независимо от величины  $k_c$ . Итак, проводя интегрирование в правой части уравнения (8), получаем

$$\Sigma(k,\nu) = -\eta^2 \frac{F_1 + iF_2}{3\left[(g + k_c^2)^2 + 4k^2k_c^2\right]^2},$$
 (13)

где  $F_1 = k_c^6 + k_c^4(7g + 12k^2) + gk_c^2(3g - 4k^2) - 3g^3$ ,  $F_2 = 8k_c\sqrt{g + k^2}(g^2 + gk_c^2 + 2k^2k_c^2)$ . Выражение (13) приводится к алгебраическому уравнению шестой степени относительно  $\sqrt{g + k^2}$ . Его численное решение дает возможность найти величину  $\Sigma(k, \nu)$ , которая при  $k_c \ge k_{c1}$  совпадает с решением исходного интегрального уравнения (8). Такое соответствие позволяет применить



**Рис. 2.** Зависимость групповой скорости от волнового числа. Кривые построены по формуле (16) при  $k_c/\sqrt{\eta} = 1$  (1), 0.85 (2) и 0.7 (3). Линия 4 отвечает выражению (6).

формулу (13) для определения закона дисперсии усредненных волн. Используя в выражении (13) равенство g = 0, получаем

$$\nu(k) - k^2 = -\eta^2 \frac{k_c^2 + 12k^2}{3(k_c^2 + 4k^2)^2} - \eta^2 \frac{16ik^3}{3k_c(k_c^2 + 4k^2)^2}.$$
 (14)

Действительная часть функции v(k) и удвоенное значение ее мнимой части показаны на рис. 1, а и b соответственно:  $\nu' = \operatorname{Re} \nu(k)$ ,  $\nu'' = -\operatorname{Im} \nu(k)$ . Видно хорошее совмещение сплошных линий и последовательностей точек, отмеченных квадратами. Такое поведение характерно для спектра и затухания волн при  $k_c \gtrsim \sqrt{\eta}$ . Первое слагаемое в правой части выражения (14) имеет минимум при  $k = k_v \equiv k_c/2\sqrt{3}$ , что по порядку величины совпадает с положением максимума k<sub>s</sub> спектральной плотности и указывает на причину немонотонности дисперсионной кривой: модификация спектра волн наиболее велика при тех k, которым отвечает окрестность максимального значения спектральной плотности. В частности, при монотонном спаде корреляций неоднородностей, когда функция S(k) максимальна при k = 0, наибольшей модификации подвергается частота однородных возбуждений.

Из формулы (14) и определения  $\nu$  при  $k_c > k_{c1}$ следует неравенство Im  $\omega^2 \ll \text{Re } \omega^2$ , которое позволяет упростить выражения для спектра  $\omega' = \text{Re } \omega(k)$  и затухания  $\omega'' = -\text{Im } \omega(k)$  волн. В таком приближении имеем

$$\omega' = \left[\omega_J^2 + c_0^2 k^2 - \eta^2 c_0^2 \frac{k_c^2 + 12k^2}{3(k_c^2 + 4k^2)^2}\right]^{1/2}, \quad (15)$$

отсюда для групповой скорости  $v_g = d\omega'/dk$  получаем

$$v_g = \frac{c_0^2 k}{\omega'} \left[ 1 - \eta^2 \frac{4(k_c^2 - 12k^2)}{3(k_c^2 + 4k^2)^3} \right].$$
 (16)

На рис. 2 приведены зависимости  $v_g(k)$  при нескольких значениях  $k_c$ . Видно, что  $v_g < 0$  при  $k < k_g$ , где  $k_g$  находим из условия равенства нулю выражения в квадратных скобках в (16)

$$k_g = \sqrt{\eta \, \frac{2A^2 - 3AK_c^2 - 6}{12A}}.\tag{17}$$

Здесь  $A = \left(9K_c^2 + 3\sqrt{3} + 9K_c^4\right)^{1/3}$ ,  $K_c = k_c/\sqrt{\eta}$ . Из требования положительности подкоренного выражения в формуле (17) следует неравенство  $k_c < k_{c2} \equiv (4/3)^{1/4}\sqrt{\eta}$ . Функция  $k_g(k_c)$ , показанная на рис. 3, в интервале  $k_{c1} < k_c < k_{c2}$  достигает максимального значения  $k_g = \sqrt{\eta}/6$  в точке  $k_c = \sqrt{5\eta}/3$  и стремится к нулю при  $k_c \rightarrow k_{c2}$ , оставаясь конечной при  $k_c = k_{c1}$ . Таким образом, неравенство  $v_g < 0$  выполняется внутри области, очерченной на рис. 3 кривой  $k_g(k_c)$  и прямой линией  $k_c = k_{c1}$ . В пределах этой области справедливо неравенство  $k \ll k_c$ , что позволяет воспользоваться в выражении (14) разложением в степенной ряд по k и получить

$$\omega \approx \omega_0 + \frac{k^2 c_0^2}{2\omega_0} \left( 1 - \frac{4\eta^2}{3k_c^4} \right) - i \, \frac{8\eta^2 c_0^2 k^3}{3\omega_0 k_c^5}, \qquad (18)$$

где  $\omega_0 = \omega_J (1 - \gamma \eta / 3k_c^2)^{1/2}$ . Отсюда следует, что при  $\gamma = 0.5$  и  $k_{c1} < k_c < k_{c2}$  интервал изменения  $\omega'$  определяется неравенствами  $-0.25 < (\omega' - \omega_J)/\omega_J < -0.08$ . Кроме того, из формулы (18) для затухания волны



**Рис. 3.** Области значений групповой скорости разного знака. Сплошная линия определяется выражением (17), штриховая задана равенством  $k_c = k_{c1}$ .

следует  $\omega'' \ll |\omega' - \omega_J|$  и  $\omega'' \propto k^3$ . Аналогичная зависимость затухания от волнового вектора была получена в работе [27] для спиновых волн в ферромагнетике с флуктуирующей магнитной анизотропией при немонотонном гауссовском спаде корреляций неоднородностей.

# 4. Заключение

С помощью метода усредненных функций Грина исследованы модификация спектра и затухание электромагнитных волн в случайно-неоднородном джозефсоновском переходе при немонотонном спаде корреляций неоднородностей. На основе самосогласованного приближения, позволяющего учесть многократное рассеяние волн на неоднородностях, определены зависимости от волнового числа к частоты и затухания усредненных волн, а также положения  $v_m$  и ширины  $\Delta v$  пика мнимой части образа Фурье усредненной функции Грина. Изучена эволюция таких зависимостей при изменении корреляционного радиуса и относительных среднеквадратичных флуктуаций неоднородностей. Определена область существования отрицательной групповой скорости джозефсоновских плазменных волн, обусловленной случайными неоднородностями перехода. Этот эффект наиболее выражен при  $k_c \sim \sqrt{\eta} \ (k_{c1} < k_c < k_{c2}),$ откуда следует  $v_g \sim -k c_0^2/3\omega'$ , т.е.  $|v_g| \sim v_{g0}/3$ . Если  $k_c \sim \sqrt{\eta}$ , то корреляционный радиус  $r_c \sim \lambda_J/\sqrt{\gamma}$ . При  $\lambda_J = 10^{-4}$  cm и  $\gamma \sim 0.5$  эффективными оказываются неоднородности с  $r_c \sim 1.4 \cdot 10^{-4}$  сm. Стохастические параметры перехода r<sub>c</sub> и у формируются при его изготовлении, в процессе которого возможно, в том числе, и целенаправленное создание случайных неоднородностей с нужными свойствами. Как правило, требуется сильное воздействие на образец для изменения значений  $r_c$ и у, поэтому "настроиться" на эффект отрицательной групповой скорости вероятно удалось бы, варьируя  $\lambda_{I}$ , например меняя температуру перехода. Подходящим объектом для экспериментальных исследований рассмотренных в работе явлений, возможно, могли бы стать джозефсоновские переходы из высокотемпературного сверхпроводника YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>, в котором отмечалось неоднородное распределение тока [15].

Отметим, что формула (14), определяющая спектр и затухание волн, может быть получена во втором порядке теории возмущений [31], если  $\gamma \ll 1$  и  $k_c \gg \sqrt{\gamma \eta/3}$ . Использованное нами самосогласованное приближение существенно расширяет область применимости выражения (14) и полученных на его основе формул (15) и (16) для спектра волн и их групповой скорости.

Автор признателен В.А. Игнатченко за обсуждение результатов работы и ценные критические замечания.

## Список литературы

 L. Zhang, L. Zhan, K. Qian, J. Liu, Q. Shen, X. Hu, S. Luo. Phys. Rev. Lett. **107**, 093 903 (2011).

- [2] K. Qian, L. Zhan, L. Zhang, Z.Q. Zhu, J.S. Peng, Z.C. Gu, X. Hu, S.Y. Luo, Y.X. Xia. Opt. Lett. 36, 2185 (2011).
- [3] R.T. Glasser, U. Vogl, P.D. Lett. Opt. Express 20, 13702 (2012); Phys. Rev. Lett. 108, 173902 (2012).
- [4] В.Г. Веселаго. УФН 92, 517 (1967); УФН 181, 1201 (2011).
- [5] Р.А. Силин. УФН 176, 562 (2006).
- [6] В.П. Макаров, А.А. Рухадзе. УФН 181, 1357 (2011).
- [7] A.A. Maznev, A.G. Every. Appl. Phys. Lett. 95, 011903 (2009).
- [8] В.А. Буров, В.Б. Волошинов, К.В. Дмитриев, Н.В. Поликарпова. УФН 181, 1205 (2011).
- [9] M.I. Shalaev, S.A. Myslivets, V.V. Slabko, A.K. Popov. Opt. Lett. 36, 3861 (2011).
- [10] А.В. Вашковский, Э.Г. Локк. УФН 176, 403 (2006).
- [11] A.V. Chumak, P. Dhagat, A. Jander, A.A. Serga, B. Hillebrands. Phys. Rev. B 81, 140404R (2010).
- [12] В.М. Агранович, Ю.Н. Гартштейн. УФН 176, 1051 (2006).
- [13] E. Arévalo. Eur. Phys. Lett. 83, 10004 (2008).
- [14] S. Savel'ev, V.A. Yampol'skii, A.L. Rakhmanov, F. Nori. Rep. Prog. Phys. 73, 026 501 (2010).
- [15] Ю.Я. Дивин, У. Поппе, И.М. Котелянский, В.Н. Губанков, К. Урбан. РЭ 53, 1205 (2008).
- [16] М.Б. Минеев, М.Ф. Фейгельман, В.В. Шмидт. ЖЭТФ 81, 290 (1981).
- [17] Ю.И. Маньков. ЖТФ, 81, 8, 88 (2011).
- [18] А. Бароне, Дж. Патерно. Эффект Джозефсона. Мир, М. (1984). 639 с.
- [19] К.К. Лихарев. Введение в динамику джозефсоновских переходов. Наука, М. (1985). 319 с.
- [20] R.H. Kraichnan. J. Math. Phys. 2, 124 (1961).
- [21] G. Brown, V. Celli, M. Haller, A.A. Maradudin, A. Marvin. Phys. Rev. B 31, 4993 (1985).
- [22] V.A. Ignatchenko, V.A. Felk. Phys. Rev. B 71, 094417 (2005).
- [23] М.А. Кривоглаз. В кн.: Вопросы физики металлов и металловедения. Киев (1961). В. 13. С. 17.
- [24] E. Schlömann. Phys. Rev. 135, A413 (1964).
- [25] М.В. Медведев. ФММ 55, 629 (1983).
- [26] В.А. Игнатченко, Р.С. Исхаков. ФММ 65, 679 (1988); ФММ 9, 5 (1990).
- [27] В.А. Игнатченко, И.В. Богомаз. ФММ 67, 866 (1989).
- [28] V.A. Ignatchenko, Yu.I. Mankov. J. Phys.: Cond. Matter 3, 5837 (1991).
- [29] С.А. Гуз, Ю.Г. Красников, М.В. Свиридов. ДАН 365, 34 (1999).
- [30] Ю.И. Маньков. ФТТ 54, 1249 (2012).
- [31] В.А. Игнатченко, Р.С. Исхаков. ЖЭТФ 72, 1005 (1977).