02;12 Ионизация и диссоциативная ионизация молекулы фреона-12 электронным ударом

© А.Н. Завилопуло, А.С. Агафонова, А.В. Снегурский

Институт электронной физики НАН Украины, 88017 Ужгород, Украина e-mail: gzavil@gmail.com

(Поступило в Редакцию 25 марта 2010 г.)

Описана методика измерений и получены относительные сечения однократной и диссоциативной ионизации молекул фреона-12 (CCl₂F₂) электронным ударом в припороговой области энергий. Эксперимент выполнен на установке с разделением и регистрацией ионов по массе при помощи монопольного масс-спектрометра. Масс-спектр молекулы фреона-12 измерялся при различных энергиях ионизирующих электронов, а для наиболее интенсивных ионов-фрагментов, в том числе и для изотопсодержащих, измерены относительные сечения диссоциативной ионизации. По пороговым зависимостям этих сечений определены потенциалы появления ионов-фрагментов. Впервые для ионов-фрагментов $[C^{35}CIF_2]^+$ и $[C^{37}CIF_2]^+$ измерен изотопический сдвиг пороговых энергий их появления.

Введение

Экспериментальное исследование продуктов диссоциации при ионизации молекул электронным ударом в припороговой области энергий актуально и востребовано как с теоретической точки зрения, так и в плане практического применения. Важность изучения процессов фрагментации обусловлена тем, что образующиеся ионные и нейтральные фрагменты могут обладать существенной кинетической энергией [1]. Поэтому процессы диссоциативной ионизации могут вносить достаточно большой вклад в баланс энергии плазмы. В этом плане следует выделить эксперименты с молекулами фреонов, поскольку они обладают, как правило, неоднозначными свойствами.

Пагубное влияние молекулы фреона-12 на окружающую среду хорошо известно [2], поэтому актуальность исследования ее деградации под действием медленных электронов не вызывает сомнения. В работе [3] дан обзор по изучению процессов взаимодействия электронов с молекулами CCl₂F₂, а экспериментальные исследования полного сечения ионизации описаны в работах [4-6]. В работе [7] выполнены теоретические расчеты полных сечений ионизации методом BEB (Binary-Encounter-Bethe) для практически всей группы фреонов, а также проведено их сравнение с экспериментом. Следует отметить, что в [8] получены абсолютные сечения ионизации молекулы фреона-12 протонным ударом при энергиях 10 keV и 1 MeV и дано сравнение с сечениями ионизации электронным и фотонным ударом. Заметим, что приведенные в базе данных Национального института стандартов США (NIST) [9] потенциалы появления одних и тех же ионов-фрагментов исходной молекулы CCl₂F₂ сильно различаются.

В настоящей работе приводятся результаты исследований фрагментации молекулы фреона-12 при ее ионизации электронным ударом, изучены особенности масс-спектра, определены энергии ионизации молекулы CCl_2F_2 и пороги появления ее ионных фрагметнов.

Эксперимент

Эксперимент выполнялся на установке, подробно описанной в [10]. В качестве аналитического прибора использовался монопольный масс-спектрометр (МС) типа МХ-7304А, который относится к классу динамических анализаторов масс. Модернизированный источник ионов МС с электронной бомбардировкой работает в режиме стабилизации электронного тока и позволяет получать пучки электронов регулируемой энергии в диапазоне 5-90 eV при токах порядка 0.3 mA и неоднородности по энергиям не более $\Delta E = 500 \,\mathrm{meV}$ (полная ширина на половине высоты максимума распределения). Ионы, образованные в месте взаимодействия пучков, регистрируются измерительной системой, позволяющей осуществлять цифровую и аналоговую индикацию массового числа фрагментов и интенсивности полезного сигнала в режимах ручной, циклической и программной развертки спектра масс. При измерении больших значений полезного сигнала ионный ток регистрируется цилиндром Фарадея, в этом случае уменьшается дискриминация по массам, характерная для вторичных электронных умножителей (ВЭУ). Для регистрации слабых сигналов используется счетный режим, а полезный сигнал снимается с ВЭУ. Надежный контроль основных параметров масс-спектрометра осуществляется компьютером, что позволяет измерять как масс-спектры, так и сечения ионизации атомов и молекул электронным ударом в диапазоне энергий от порога процесса до 100 eV.

Остановимся на некоторых методических аспектах поставленной задачи [11]. Пучки молекул фреона-12 создавались многоканальным источником эффузионного типа, обеспечивавшим концентрацию молекул в области взаимодействия с пучком электронов в пределах

Особое внимание было уделено калибровке шкалы энергии ионизирующих электронов, поскольку к неоднозначности истинной энергии ионизирующих электронов в области столкновений приводят влияние контактной разности потенциалов электронно-оптической системы извлечения и фокусировки ионов, наложение конфигураций электростатических полей, а также другие аппаратные эффекты. Таким образом, точность определения потенциалов появления тех или иных фрагментов реакций зависит от точности приведения энергии первичных электронов к абсолютной энергетической шкале. Для решения этой проблемы нами использовался метод привязки экспериментально измеренных порогов энергетических зависимостей выхода материнских ионов (функций ионизации) к известным порогам ионизации, обладающим высокой достоверностью [9]. В качестве калибровочных газов нами были выбраны аргон и криптон, для которых измерялись начальные участки функции ионизации электронным ударом. О корректности и работоспособности такой методики измерений можно судить по контрольному измерению начального участка энергетической зависимости сечения ионизации атома Kr [11]. Отметим, что здесь наблюдается хорошее согласие с результатами работы [12], в которой измерения функции ионизации проведены с высоким энергетическим разрешением электронов $\Delta E = 0.05 \, \text{eV}$. Такая процедура калибровки обеспечивала точность определения шкалы энергий, сопоставимую с полушириной энергетического разброса электронов в пучке.

Результаты и их обсуждение

Гометрия молекулы CF_2Cl_2 (рис. 1) может быть представлена в виде деформированного тетраэдра, в котором угол к нормали составляет 109°, а углы между связями Cl-C-Cl и F-C-F составляют 112 и 106°

Рис. 1. Схема молекулы фреона-12.

соответственно. Атомы F и Cl расположены в углах тетраэдра, а атом C — в его центре.

Прежде чем перейти к обсуждению экспериментальных результатов, следует остановиться на специфических свойствах молекулы фреона, проявляющихся при ее взаимодействии с электронами и связанных с наличием изотопов атома Cl с массовыми числами, отличающимися на несколько массовых единиц. В общем случае схему ионизации молекул электронным ударом можно упрощенно представить на примере двухатомной молекулы [3], поскольку механизмы образования положительных ионов (в том числе и фрагментов) в целом аналогичны для всех типов молекул:

$$AB + e \to AB^+ + 2e, \tag{1}$$

$$\rightarrow \mathbf{A}^{+} + \mathbf{B} + 2e, \qquad (2)$$

$$\rightarrow \mathbf{A}^{+} + \mathbf{B}^{-} + e. \tag{3}$$

Схема (1) справедлива, если исходная молекула при столкновении с электронами ионизируется, образуя положительный ион. Схема (2) должна учитывать, что образование ионного фрагмента с последующей диссоциацией возможно при выполнении следующего условия:

$$IE(AB^+/AB) - IE(A^+/A) > D_0(AB), \qquad (4)$$

где IE — энергия ионизации (или потенциал появления), D_0 — энергия диссоциации. Из формулы (4) следует, что разность энергии ионизации материнской молекулы АВ и энергии ионизации атомов-фрагментов, входящих в ее состав, должна быть больше энергии диссоциации этой молекулы. И наконец, схема (3) реализуется в случае, если один из фрагментов, образующийся в процессе диссоциативной ионизации, захватывает медленный электрон и становится отрицательным ионом, что ведет к образованию ионной пары. В этом случае энергия ионизации материнской молекулы может быть выше энергии появления иона-фрагмента, что связано с энергией сродства к электрону отрицательного ионного фрагмента. Например, на основании термодинамических расчетов для молекулы фреона-22 [7], порог появления (AE) фрагмента CHClF⁺ равен 10.6 eV, а порог ионизации материнской молекулы CHF₂Cl составляет 12.28 eV.

В работе [8] проведены расчеты энергий разрыва связи (дефекта энергии) ΔE для простейшего процесса фрагментации молекулярного иона фреона:

— с отрывом атома Cl —

$$[CCl_2F_2]^+ = [CClF_2]^+ + Cl \quad \Delta E = 1.53 \text{ eV},$$
 (5)

— с отрывом атома F —

$$[CCl_2F_2]^+ = [CCl_2F]^+ + F \quad \Delta E = -0.23 \text{ eV}.$$
 (6)

Как видим из уравнения (5), при отрыве атома хлора $\Delta E > 0$, и если ион $[CF_2Cl_2]^+$ нестабильный, то избыток кинетической энергии приводит к образованию фрагмента $[CF_2Cl]^+$ и нейтрального атома Cl. Фрагментация с отрывом нейтрального атома F происходит с минимальным отрицательным дефектом энергии $\Delta E < 0$ (6). Фрагментация материнского иона $[CF_2Cl_2]^+$ с отрицательным дефектом энергии бе согласно приведенным ниже реакциям:

$$[\text{CCl}_2\text{F}_2]^+ = \text{CClF}_2 + \text{Cl}^+ \quad \Delta E = -1.86 \text{ eV}, \quad (7)$$

$$[\text{CCl}_2\text{F}_2]^+ = \text{CCl}_2\text{F} + \text{F}^+ \quad \Delta E = -6.89 \text{ eV}.$$
 (8)

Диссоциация иона [CF₂Cl]⁺ происходит с нарастающей абсолютной величиной дефекта энергии:

$$[\text{CClF}_2]^+ = [\text{CF}_2]^+ + \text{Cl} \quad \Delta E = -3.27 \,\text{eV}, \qquad (9)$$

$$[\text{CClF}_2]^+ = [\text{CClF}]^+ + \text{F} \quad \Delta E = -3.93 \text{ eV},$$
 (10)

$$[\text{CClF}_2]^+ = \text{CF}_2 + \text{Cl}^+ \quad \Delta E = -7.62 \,\text{eV}, \quad (11)$$

$$[\text{CClF}_2]^+ = \text{CClF} + \text{F}^+ \quad \Delta E = -14.70 \,\text{eV}.$$
 (12)

Масс-спектры

Экспериментальные данные о масс-спектрах ионовфрагментов позволяют выяснить вероятности основных каналов диссоциации, закономерности разрыва межатомных связей при ионизации многоатомных молекул и изучить влияние пространственной структуры молекулы на процессы фрагментации. Приведенные выше (см. формулы (5)-(12)) расчетные данные для дефектов энергии при фрагментации молекулы CCl_2F_2 можно использовать при анализе масс-спектра, поскольку они дают информацию о вероятности фрагментации под действием электронного удара.

На рис. 2 представлены полученные нами массспектры молекулы фреона при различных энергиях ионизирующих электронов (E_i). Напомним, что особенностью молекулы фреона является наличие у атома Cl двух изотопов с разным процентным содержанием: ³⁵Cl = 75.53°, ³⁷Cl = 24.47%. Это отображается на масс-спектре молекулы CCl₂F₂ в виде пиков ионовфрагментов, содержащих изотопы атома Cl с разницей в 2 a.m.u. Исходя из реакции (5), наиболее низкую интенсивность в масс-спектре должен иметь пик, соответствующий молекулярному иону $[CCl_2F_2]^+$ (m/z = 120 a.m.u.), а самым интенсивным должен быть пик иона-фрагмента $[CClF_2]^+$ (*m*/*z* = 85 a.m.u.). В зависимости от энергии электронов четко прослеживается изменение степени фрагментации исходной молекулы. Заметим, что при $E_i = 70 \,\mathrm{eV}$ масс-спектр и относительная интенсивность основных пиков (см. рис. 2) хорошо согласуются с данными базы данных NIST $(E_i = 70 \text{ eV})$ [9], что свидетельствует о корректности нашего эксперимента. Характерно, что в масс-спектре молекулы фреона-12 имеется ряд изотопных пиков, наиболее интенсивные из которых

Рис. 2. Масс-спектры молекулы CCl₂F₂ при различных энергиях бомбардирующих электронов.

соответствуют ионам $C_{2}^{35}ClF_{2}^{+}$ и $C_{2}^{37}ClF_{2}^{+}$ с m/z = 85 и 87 а.m.u. соответственно. Эти пики хорошо выделяются даже при $E_{i} = 20$ eV, когда остальные пики имеют интенсивность ниже порога чувствительности нашей системы регистрации, а для некоторых из них порог появления лежит выше 20 eV.

В табл. 1 представлено сравнение относительного вклада молекулярных ионов и ионов-фрагментов в сечение ионизации молекулы фреона-12 при ее взаимодействии с различными налетающими частицами, рассчитанного по формуле:

$$I_m = \frac{100J_m}{\sum\limits_{i}^{n} J_m},\tag{13}$$

где I_m — относительный вклад ионного фрагмента данной массы в полное сечение ионизации (в %), J_m — интенсивность ионного пика в масс-спектре, $\sum_{i}^{n} J_m$ — сумма интенсивностей масс-пиков в исследуемом диапазоне масс.

Наши данные в табл. 1 для фрагментов-изотопов приведены в сравнении с данными NIST [9]. Это позволяет качественно оценить эффективность ионизации и фрагментации независимо от типа налетающей частицы и энергии столкновения. Максимальная интенсивность пиков наблюдается для ионов-фрагментов [CCIF₂]⁺, [CCl₂F]⁺, [CCl₇F]⁺, [CF₂]⁺, а наименьшая — для молекулярных ионов-фрагментов Cl₂⁺ и F₂⁺. Если обратиться к результатам расчета по дефектам энергии (см. реакции

Ион				$I_m, \%$							
PION	m/z, a.m.u.	H ⁺ 10 keV	<i>H</i> ⁺ 1 MeV	hv 20 eV	hv 70 eV	<i>e</i> ⁻ 70 eV	NIST 70 eV	Наши данные			
		[8]		[19]		[6]	[9]	70 eV 20 eV			
$[C^{35}Cl_2F_2]^+$	120	0.05	0.1	_	_	0.21	0.12	0.12	0.01		
$[C^{35}Cl^{37}ClF_2]^+$	122						0.07	0.07	0.003		
$[C^{37}Cl_2F_2]^+$	124						0.01	0.01	0.023		
$[C^{35}Cl_2F]^+$	101	8.6	9.4	11.7	13.1	6.33	4.81	3.98	0.81		
$[C^{35}Cl^{37}ClF]^+$	103						3.18	2.38	0.72		
$[\mathrm{C}^{37}\mathrm{Cl}_2\mathrm{F}]^+$	105						0.5	0.47	0.15		
$[\mathrm{C}^{35}\mathrm{ClF}_2]^+$	85	- 58.0	65.5	73.8	25.1	48.77	55.2	53.92	71.1		
$[\mathrm{C}^{37}\mathrm{ClF}_2]^+$	87						18.02	17.55	23.2		
$[C^{35}Cl_2]^+$	82		_	_	0.17	0.198	0.09	0.09			
$[C^{35}Cl^{37}Cl]^+$	84						0.07	0.07			
$[C^{37}Cl_2]^+$	86						0.55	0.65			
$[^{35}\text{Cl}_2]^+$	70	_	_	_	_	0.038	0.14	0.15			
$[^{35}Cl^{37}Cl]^+$	72						0.09	0.11			
$[^{37}Cl_{2}]^{+}$	74						0.01	0.01			
$[C^{35}ClF]^+$	66	2.9	3.6	2.9	6.1	2.88	2.03	2	0.76		
$[C^{37}ClF]^+$	68						0.67	0.67	0.31		
$[^{35}\text{ClF}]^+$	54					0.025	0.01	0.01			
$[^{37}\text{ClF}]^+$	56						0.01	0.01			
$[CF_2]^+$	50	8.8	9.0	10.6	14.1	8.02	6.54	6.57	0.97		
$[C^{35}Cl]^+$	49	- 2.4	1.4	_	3.75	4.8	0.48	0.49			
$[C^{37}Cl]^+$	47						1.46	1.47			
$[F_2]^+$	38	-	_			_	0.07	0.06			
$[^{35}Cl]^+$	35	- 11.9	6.0	0.4	20.6	1.1	3.86	4.25			
$[^{37}\text{Cl}]^+$	37						1.27	1.4			
$[CF]^+$	31	5.0	4.4	0.56	10.7	7.3	0.38	0.38			
$[\mathbf{F}]^+$	19				2.7	0.41	0.14	0.17			
$[Cl]^+$	12	1.4	0.7		2.9	1.5		2.38			

Таблица 1. Относительный вклад ионов-фрагментов в полное сечение ионизации молекулы фреона-12 при ее взаимодействии с протонами, фотонами и электронами

(5)–(12)), то наблюдается корреляция между этими данными и относительными интенсивностями масс-пиков в изученных процессах, т.е. когда фрагментация материнского иона $[CCl_2F_2]^+$ происходит с отрицательным дефектом энергии ($\Delta E < 0$), а интенсивность ионовфрагментов — максимальна (табл. 1). Таким образом, картина выхода фрагментов слабо зависит от способа

ионизации исходной молекулы, а относительные вероятности образования фрагментов в основном коррелируют с энергией их связи в молекулярном ионе. Безусловно, заметную роль при этом могут играть и другие механизмы, такие как перегруппировка атомов при образовании ионов-фрагментов и разрыв связей в процессе диссоциации.

Ион	m/z		Фотоионизация			
		наши данные, eV	данные других авторов, eV	ссылка	AE, eV	ссылка
$[CCl_2F_2]^+$	120	$\textbf{12.06} \pm \textbf{0.2}$	12.00 ± 0.2	[9]	11.75	[15]
$[CCl_2F]^+$	101	15.25 ± 0.2	15.4 ± 0.2	[16]	13.81	То же
$[CClF_2]^+$	85	12.28 ± 0.2	12.55	[17]	11.99	» »
$[CClF_2]^+$	87	12.44 ± 0.2	_	_		
$[Cl_2]^+$	70	16.85 ± 0.2	16.7 ± 1.0	[16]		
$[CCIF]^+$	66	17.91 ± 0.2	18.1 ± 0.2	То же	17.76	[15]
$[CF_2]^+$	50	17.85 ± 0.2	18.1 ± 0.2	» »	16.98	То же
$[CC1]^+$	47	16.79 ± 0.2	17.0 ± 0.5	» »		
$[F_2]^+$	38	15.85 ± 0.2	16.0 ± 1.0	» »		
$[Cl]^+$	35	15.29 ± 0.2	16.0 ± 0.2	» »		
$[CF]^+$	31	19.82 ± 0.2	19.5 ± 0.5	» »		
$[\mathbf{F}]^+$	19	_	21.00	[14]		
$[\mathbf{C}]^+$	12	21.80 ± 0.2	22.00	То же		

Таблица 2. Пороговые энергии появления ионов-фрагментов. Для исходной молекулы приведена энергия ионизации (выделено жирным шрифтом)

Энергетические зависимости

На основании измеренных нами масс-спектров (рис. 2) были выбраны пики наиболее интенсивных ионовфрагментов, для которых измерялись энергетические зависимости относительных сечений диссоциативной ионизации в диапазоне энергий электронов 5-90 eV. По начальным участкам этих зависимостей с помощью методики, описанной в [11,12], были определены энергии появления ионов-фрагментов, представленные в табл. 2. Там же дано сравнение полученных нами экспериментальных энергий появления (*AE*) ионных фрагментов с данными других авторов, полученными методом электронного и фотонного удара [14–17].

Как видно из табл. 2, в пределах точности нашего эксперимента наблюдается удовлетворительное согласие между нашими данными и результатами других авторов [15]. Однако следует заметить, что в базе NIST [9] для ионов-фрагментов молекулы фреона-12 имеется большой разброс значений энергий появления ионов-фрагментов, измеренных методами электронного удара (EI) и фотоионизации (PI). Например, для ионафрагмента $[CCl_2F]^+$ энергии появления AE, представленные в базе NIST [9], по данным разных авторов, с использованием разных методов составляют от 12.07 до 15.4 eV. Возможны две причины, объясняющие такое различие: во-первых, образование фрагментов в процессе диссоциации по разным каналам с соответствующими величинами дефекта энергии ΔE (см. реакции (5)-(12)) и, во-вторых, наличие изотопов фрагментов диссоциации, содержащих атом Cl с массовым числами 35 и 37 a.m.u.

Наиболее интересными из исследованных нами энергетических зависимостей сечений образования ионовфрагментов являются кривые выхода ионных фрагментов $[C^{35}ClF_2]^+$ и $[C^{37}ClF_2]^+$ (см. рис. 3). Как видно, ход

обоих сечений в измеренном диапазоне энергий в целом совпадает, однако наблюдается разница в энергиях появления ионов-фрагментов с массовыми числами 35 и 37 а.т.u., которая составляет 160 meV. Такая разница может быть объяснена изотопическим сдвигом порогов появления, который имеет место при наличии ионовфрагментов с разным массовым числом (подобная картина наблюдалась и в работах [18,19]). Теоретический расчет изотопического сдвига (изотопический эффект) в энергиях появления ионных фрагментов с разным массовым числом в процессе диссоциативной ионизации молекул, проведенный в [19] с использованием стандартных квантово-механических подходов, показывает, что его величина, как правило, колеблется от нескольких десятков до нескольких сотен микроэлектрон-вольт.

Рис. 3. Пороговые участки энергетических зависимостей сечения выхода ионов-фрагментов диссоциативной ионизации молекулы фреон-12 электронным ударом: $1 - [C^{35}ClF_2]^+$, $2 - [C^{37}ClF_2]^+$, вертикальные риски соответствуют энергиям ионизации молекулярных орбиталей [20].

На указанных кривых энергетических зависимостей нами были обнаружены особенности в пороговом поведении сечений выхода ионных фрагментов $[C^{35}ClF_2]^+$ и $[C^{37}ClF_2]^+$ (см. рис. 3). Энергетические положения указанных особенностей в целом неплохо согласуются с расчетными величинами энергий ионизации ряда молекулярных орбиталей исходной молекулы фреона-12 (при учете, естественно, энергетического баланса реакции диссоциативной ионизации, т. е. энергии диссоциации исходной молекулы и энергий ионизации соответствующих фрагментов).

Заметим, что значение потенциала появления (АЕ) материнского иона [CCl₂F₂]⁺ хорошо согласуется с величиной вертикального ионизационного потенциала [20]. В соответствии с реакциями (5) и (6), первоначальная фрагментация молекулярного иона [CCl₂F₂]⁺ происходит с образованием четырехатомного иона и нейтрального атома Cl (или F). Четырехатомные ионы [CCl₂F]⁺ и [CClF₂]⁺ имеют потенциалы появления AE 15.25 и 12.28 eV, соответственно, и образуются при низких кинетических энергиях [7,20], поэтому каналы образования этих ионов различаются. Очевидно, что интерпретация наблюдаемой структуры сечений требует более тщательного теоретического анализа с учетом аппаратной функции экспериментального метода измерений. Отметим, однако, что образование иона [CCl₂F]⁺ однозначно может быть соотнесено с ионными состояниями исходной молекулы $(4b_2)^{-1}$ и $(6a_1)^{-1}$. По-видимому, его выход, скорее, связан с разрывом связи C-Cl, чем C-F [20].

Заключение

Экспериментально изучены особенности фрагментации молекулы фреона-12 при ее ионизации электронным ударом в диапазоне энергий бомбардирующих электронов 7-70 eV. Исследование масс-спектров при разных энергиях ионизирующих электронов позволило определить относительные интенсивности массовых пиков изотопных ионов-фрагментов, содержащих атом хлора (³⁵Cl и ³⁷Cl). Измерения относительных интенсивностей выхода осколочных ионов позволили оценить степень фрагментации исходной молекулы. Проведено сравнение вкладов парциальных сечений выхода ионов фрагментов в полное сечение ионизации молекулы фреона-12 при ее взаимодействии с протонами, фотонами и электронами. Обнаружено, что вне зависимости от типа бомбардирующей частицы максимальный вклад в полное сечение ионизации дают ионы-фрагменты [CF₂Cl]⁺, [CFCl₂]⁺ и [CF₂]⁺. Для наиболее интенсивных фрагментов измерены энергетические зависимости сечений диссоциативной ионизации. По пороговым зависимостям этих сечений определены потенциалы появления ионовфрагментов, которые сравниваются с данными других авторов. Впервые экспериментально зафиксирован изотопический сдвиг порога появления ионов-фрагментов $[C^{35}ClF_2]^+$ и $[C^{37}ClF_2]^+$ молекулы фреона-12, который составляет 160 meV.

А.Н. Завилопуло, А.С. Агафонова, А.В. Снегурский

Авторы выражают искреннюю благодарность О.Б. Шпенику за полезные дискуссии, Л.Г. Романовой и М.И. Миките за помощь при выполнении данной работы.

Список литературы

- [1] Полякова Г.Н., Физгеер Б.М., Ерко В.Ф. // Химия выс. энергий. 1977. Т. 11. № 3. С. 214–217.
- [2] Urich R.W., Wittenberg P.H., Bowerman D.L. et al. // J. Forensic Sci. 1977. Vol. 20 (1). P. 34–39.
- [3] Christophorou L.G., Olthoff J.K., Wang Y. // J. Phys. Chem. Ref. Data. 1997. Vol. 26. P. 1205–1290.
- [4] Beran J.A., Kevan L. // J. Phys. Chem. 1969. Vol. 73. P. 3866– 3871.
- [5] Pejčev V.M., Kurepa M.V., Cadez I.M. // Chem. Phys. Lett. 1979. Vol. 63. P. 301–306.
- [6] Leiter K., Scheier P., Walder G. et al. // Int. J. Mass Spectrom. Ion Process. 1989. Vol. 87. P. 209–224.
- [7] Irikura K.K., Asgar A.M., Yong-Ki K. // Int. J. Mass Spectr. 2003. Vol. 222. P. 189–200.
- [8] Afrosimov V.V., Basalaev A.A., Fastrup B. et al. // J. Phys. B: At. Mol. Opt. Phys. 2003. Vol. 36. P. 1991–2000.
- [9] NIST Standard Reference Database. ⟨http://www.webbook.nist.gov.⟩
- [10] Zavilopulo A.N., Surkov V.A., Shpenik O.B. // Anal. Chim. Acta. 2006. Vol. 573–574. P. 427–431.
- [11] Завилопуло А.Н., Романова Л.Г., Шпеник О.Б. и др. // ЖТФ. 2009. Т. 79. Вып. 4. С. 19–24.
- [12] Fiegele T., Hanel G., Torres I. et al. // J. Phys. B. 2000. Vol. 33.
 P. 4263–4283.
- [13] Zhang W., Cooper G., Ibuki T., Brion C.E. // Chem. Phys. 1991. Vol. 151. P. 357–370.
- [14] Zayats A.Yu., Perov A.A., Simonov A.P. // Sov. J. Chem. Phys. 1985. Vol. 2. P. 1906–1911.
- [15] Ajello J.M., Huntress W.T. Jr., Rayermann P. // J. Chem. Phys. 1976. Vol. 64. P. 4746–4753.
- [16] Baker R.F., Tate J.T. // Phys. Rev. 1938. Vol. 53. P. 683-691.
- [17] Leyland L.M., Majer J.R., Robb J.C. // J. Chem. Soc. Faraday Trans. 1970. Vol. 66. P. 898–907.
- [18] Завилопуло А.Н., Снегурский А.В. // Письма в ЖТФ. 2002.
 Т. 28. Вып. 21. С. 68–74.
- [19] Hanel G., Gstir B., Fiegele T. et al. // J. Chem. Phys. 2002. Vol. 116. P. 2456–2463.
- [20] Sierra B., Martinez R., Castano F. // J. Phys. B: At. Mol. Opt. Phys. 2004. Vol. 37. P. 295–304.