01;10 Аксептанс и пропускание квадрупольного фильтра масс с амплитудной модуляцией высокочастотного напряжения с учетом краевого поля

© Н.В. Коненков, А.Н. Корольков, Ю.В. Страшнов

Рязанский государственный университет им. С.А. Есенина, 390000 Рязань, Россия e-mail: n.konenkov@rsu.edu.ru

(Поступило в Редакцию 9 ноября 2009 г. В окончательной редакции 26 января 2010 г.)

Развит метод расчета аксептанса квадрупольного фильтра масс с амплитудной модуляцией высокочастотного напряжения. Ключевым фактором при нахождении преобразования фазового эллипса краевыми полями является учет набега фазы высокочастотного поля при движении ионов во входном краевом поле. Характер изменения комбинированного аксептанса в зависимости от аксиальной энергии ионов (или времени пролета ионами краевого поля) согласуется с рассчитанным коэффициентом пропускания, что указывает косвенно на справедливость предлагаемого подхода.

Введение

Впервые экспериментально влияние дополнительного высокочастотного (ВЧ) напряжения на форму массового пика наблюдалось Девантом в 1989 г. [1], но природа этого явления не была раскрыта. Позже Козо [2,3] описал воздействие дополнительного квадрупольного ВЧ-поля малой амплитуды в терминах "of unstable band generation inside a stable band", что соответствует параметрическому резонансу первого порядка [4,5]. Теория квадрупольного параметрического резонансного возбуждения колебаний ионов первого порядка представлена Альфредом и др. [4]. Далее Судаковым и др. [5,6] теоретически было показано, что полосы нестабильности создаются параметрическим резонансом высокого порядка, в результате чего рабочая область расщепляется на острова стабильности.

В спектре колебаний ионов в квадрупольном радиочастотном электрическом поле существуют частоты, которые соответствуют *периодическим* колебаниям ионов. Возбуждение резонансных колебаний ионов дополнительным периодическим сигналом на кратных указанных частотах позволяет осуществить различные методы манипулирования ионами. Резонансное поглощение энергии от дополнительного генератора рассматривалось как метод детектирования ионов в трехмерной ионной ловушке Паулем и др. [5,7] при зарождении квадрупольной масс-спектрометрии. С развитием квадрупольной массспектрометрии метод параметрического резонансного возбуждения нашел широкое применение для:

a) удаления ионов заданной массы из области удержания;

б) контроля эндотермических реакций захваченных ионов;

в) масс-селективного сканирования ионов в ловушке Пауля и линейной ловушке [4,8].

Параметрический резонанс — это явление увеличения амплитуды колебаний при периодическом изменении

параметра осциллирующей системы. В нашем случае колебательная система — это ион в квадрупольном ВЧ-поле. Ее параметрами являются постоянное напряжение U, амплитуда V переменного ВЧ-напряжения и частота Ω . Таким образом, технически квадрупольный резонанс можно осуществить путем амплитудной модуляции постоянного напряжения

 $U[1+m\cos(\omega t+\alpha)],$

переменного ВЧ-напряжения

 $V\cos\Omega t \left[1 + m\cos(\omega t + \alpha)\right],$

полного питающего напряжения [4,9]

$$(U + V \cos \Omega t) [1 + m \cos(\omega t + \alpha)],$$

а также фазовой или частотной модуляции ВЧ-напряжения [8]

$$V\cos|\Omega t + m\cos(\omega t + \alpha)|$$

где m — параметр модуляции, ω — частота модулирующего сигнала. Параметрического резонанса можно достичь также, используя дополнительное ВЧ-напряжение $V' \cos \omega t$, подавая на противоположные пары электродов напряжение вида

$$\pm [U + V \cos \Omega t + V' \cos(\omega t + \alpha)],$$

где *а* — сдвиг фаз [4–6,10].

В работе [9] представлены результаты исследования режима работы квадрупольного анализатора с амплитудной модуляцией рабочих напряжений. При этом не принимался во внимание сдвиг фаз между ВЧ-напряжением и модулирующим сигналом, а начальная фаза влета ионов в ВЧ-поле учитывалась на интервале периода (π) основного ВЧ-напряжения. Однако учет этого фактора на интервале общего периода ВЧ-напряжения и модулирующего сигнала может существенно повлиять на результат. Аксептанс фильтра масс исследовался в работе [11] для случая квадрупольного возбуждения с помощью дополнительного ВЧ-напряжения низкой частоты, но без учета краевых входных полей. В связи с этим представляет практический интерес изучение аксептанса фильтра масс при работе в верхнем острове стабильности, возбуждаемом амплитудной модуляцией ВЧ-напряжения высокой частоты $v = \omega/\Omega = 9/10$ с учетом указанных факторов.

Частота $\omega = (9/10)\Omega$ выбрана из практических соображений. Когда частота модуляции ω и частота ВЧ-напряжения Ω близки, спектр временны́х гармоник с частотой $\Omega - \omega$, Ω , $\Omega + \omega$ не будет сильно подавлен высокодобротным *LC*-контуром нагрузки ВЧ-генератора.

Уравнения движения и рабочий остров стабильности

Используемые уравнения движения ионов по поперечным координатам *x* и *y* анализатора имеют вид [5,12]:

$$\frac{d^2x}{d\xi^2} + \left\{ a - 2q\cos 2(\xi - \xi_0) \times \left[1 + m\cos(2\nu(\xi - \xi_0) + 2\alpha) \right] \right\} f(z)x = 0, \quad (1)$$

$$\frac{d^2 y}{d\xi^2} - \left\{ a - 2q \cos 2(\xi - \xi_0) \right. \\ \left. \times \left[1 + m \cos \left(2\nu(\xi - \xi_0) + 2\alpha \right) \right] \right\} f(z) x = 0, \quad (2)$$

$$z = \frac{z_f \xi}{n_f \pi},\tag{3}$$

$$f(z) = 1 - \exp(-2.13z - 1.55z^2),$$
 (4)

где

$$a = \frac{8eU}{m_i \Omega^2 r_0^2}, \quad q = \frac{4eV}{m_i \Omega^2 r_0^2}, \quad \nu = \frac{\omega}{\Omega}, \quad \xi = \frac{\Omega t}{2}, \quad (5)$$

 ξ_0 — начальная фаза влета иона в ВЧ-поле, е и m_i — заряд и масса иона, U — постоянное напряжение, V — амплитуда ВЧ-напряжения, r_0 — радиус вписанной окружности между вершинами четырех электродов фильтра масс (радиус поля [13]), ω — частота модуляции, m — параметр модуляции (индекс модуляции), α — сдвиг фаз между ВЧ-напряжением и сигналом модуляции, z — осевая безразмерная координата, n_f — число периодов ВЧ-поля пребывания ионов в краевом поле с линейным размером $z_f = 1.5r_0$.

Уравнения (1)-(3) описывают движение ионов в краевом поле с экспоненциально возрастающим потенциалом (4) на входе фильтра масс [14,15] и при f(z) = 1 — движение ионов в квадрупольном поле анализатора [5,12].

При модуляции на относительной частоте $v = \omega/\Omega = K/P$, когда v — простая несократимая дробь,

К и *Р* — целые числа, причем K < P, полосы нестабильности следуют вдоль изо- β -линий (β — параметр стабильности или характеристический показатель) [5]:

$$\beta = \frac{K}{P}, \quad K = 1, 2, \dots, P - 1.$$
 (6)

Здесь исследуется верхний остров стабильности, формируемый полосами нестабильности с $\beta_x = (P-1)/P$ и $\beta_y = 1/P$. В частности, при $\nu = 9/10$ наиболее интенсивные полосы локализуются вдоль $\beta_x = 0.9$ и $\beta_y = 0.1$ вблизи границ невозмущенной первой области стабильности. Поэтому выбор $\nu = 9/10$ обусловлен также этим обстоятельством.

Для нахождения положения острова стабильности на плоскости параметров a, q рассчитывалась матрица преобразования M(a, q) начальных координат и скоростей $\{u = 0 \text{ и } du/d\xi = 1\}$ и $\{u = 1 \text{ и } du/d\xi = 0\}$ за период πP . Если след матрицы SpM(a, q) < 2, то точка a, qпопадает в остров стабильности. Условие SpM(a, q) = 2соответствует границам островов стабильности. Более подробно численный метод расчета положения острова на плоскости a, q описан в работе [5].

На рис. 1 показан верхний остров стабильности на плоскости параметров a, q для трех значений параметра модуляции m = 0.01, 0.02 и 0.03 при относительной частоте модуляции $v = \omega/\Omega = 9/10$. С увеличением параметра модуляции m уменьшается площадь четырехугольника (острова) стабильности и остров смещается вверх по оси a. Каждый из них может быть использован для разделения ионов по удельным зарядам, как и в случае первой области. В острове существуют две рабочие вершины — верхняя **В** и нижняя **D**, вблизи которых возможна настройка разрешающей способности путем изменения наклона линии сканирования $a = 2\lambda q$. Линия сканирования, проходящая через вершину **C**,

Рис. 1. Острова стабильности при амплитудной модуляции высокочастотного напряжения для параметров модуляции m = 0.01 (•), 0.02 (•) и 0.03 (•). Отношения частот $v = \omega/\Omega = 9/10$. В и **D** — рабочие вершины, пунктир — $\lambda = 0.16549$.

соответствует минимальной разрешающей способности $R = q/\Delta q \approx 64$ для четырехугольника с m = 0.01.

Метод расчета аксептанса апробировался не только в одной рабочей точке a, q четырехугольника вблизи вершины **D**. Контуры аксептанса квадрупольного фильтра масс подобны и в других островах (различаются незначительно), изменяется лишь площадь, ограничиваемая контурами.

Расчет эллипсов захвата

В динамике аксептанс квадрупольного фильтра масс (КФМ) характеризуется эллипсами захвата [8,13,16,17] на фазовой плоскости начальных координат и скоростей u и $du/d\xi$ (u — координата x или y):

$$\Gamma u^2 + 2Au \,\frac{du}{d\xi} + B \left(\frac{du}{d\xi}\right)^2 = \varepsilon,\tag{7}$$

где A, B и Γ — параметры эллипса захвата, которые зависят от a, q и начальной фазы ξ_0 и выражаются через элементы матрицы преобразования M(a, q) [5]:

$$A(\xi_0) = \frac{[m_{11}(\xi_0) - m_{22}(\xi_0)]_{\pi P}}{2\sin\pi\beta}, \quad B(\xi_0) = \frac{[m_{12}(\xi_0)]_{\pi P}}{\sin\pi\beta},$$
$$\Gamma(\xi_0) = -\frac{[m_{21}(\xi_0)]_{\pi P}}{\sin\pi\beta}.$$
(8)

Величину ε называют аксептансом. Она равна площади эллипса, деленной на π . Период изменения начальной фазы $\xi_0 - [0 - \pi P]$ и период сдвига фаз α составляет π , что соответствует периоду ВЧ-напряжения модулирующего сигнала с частотой ω .

Эллипсы захвата (или фазовые эллипсы [6]) модифицируются входными краевыми полями. Учет влияния входного краевого поля на аксептанс КФМ учитывается матрицей преобразования M_f , которая устанавливает связь между входными координатами и скоростями u_a и $(du/d\xi)_a$ и выходными — u_e и $(du/d\xi)_e$ [13–15,17]:

$$\begin{bmatrix} u_e \\ \dot{u}_e \end{bmatrix} = \begin{bmatrix} C & S \\ C' & S' \end{bmatrix} \begin{bmatrix} u_a \\ \dot{u}_a \end{bmatrix} = M_f \begin{bmatrix} u_a \\ \dot{u}_a \end{bmatrix}$$
(9)

при начальных условиях $u_a = 1$, $\dot{u}_a = 0$ и $u_a = 0$, $\dot{u}_a = 1$. Индекс "*a*" соответствует входной апертуре, а индекс "*e*" — входной границе полного поля. Пусть n_f есть число периодов ($\Omega/2\pi$), за которое ион пролетает краевое поле. Для того чтобы учесть задержку по времени πn_f между входом ионов на входную апертуру и попаданием в основное ВЧ-поле, матрицу преобразования M_f определяем за полный период πP , включающий время пролета πn_f . Тогда модифицированные параметры эллипсов захвата A_a , B_a и Γ_a можно выразить через параметры A, B, Γ как [13,17]

$$\begin{bmatrix} B_{a}(\xi_{0}) \\ A_{a}(\xi_{0}) \\ \Gamma_{a}(\xi_{0}) \end{bmatrix} = \begin{bmatrix} S'^{2} & 2SS'' & S^{2} \\ C'S' & C'S + S'C & CS \\ C'^{2} & 2CC' & C^{2} \end{bmatrix}_{P\pi} \begin{bmatrix} B(\xi_{0}) \\ A(\xi_{0}) \\ \Gamma(\xi_{0}) \end{bmatrix}.$$
(10)

Для расчета матрицы M_f использовалась краевая модель входного краевого поля с экспоненциально нарастающим потенциалом [14,15]. Зная модифицированные параметры A_a , B_a и Γ_a , можно рассчитать контуры аксептанса (предельный аксептанс) по заданному уровню. Метод построения контуров изложен подробно в работах [11,15].

Аксептанс квадрупольного фильтра масс

На рис. 2 показаны параметры А, В и Г эллипсов захвата для поперечных координат х и у в зависимости от начальной фазы ξ_0 при двух значениях сдвига фаз $\alpha = 0$ и $\pi/2$ в рабочей точке a = 0.2331, q = 0.69965 вблизи вершины **D**. При соотношении частот $v = \omega/\Omega = 9/10$ период изменения начальной фазы равен 10*π*. Как и ожидалось, с изменением сдвига фаз α на $\pi/2$ зависимости $A(\xi_0)$, $B(\xi_0)$ и $\Gamma(\xi_0)$ смещаются на 5 π . Параметры эллипсов А, В и Г изменяются с периодом 10 л и огибающая этих параметров соответствует характеру изменения A, B и Γ на периоде π в невозмущенной первой области стабильности [13]. Имеет место модуляция параметров фазовых эллипсов с периодом л, что соответствует периоду $T_0 = 2\pi/\Omega$ ВЧ-напряжения. Максимально значение $B_{\text{max}} = B(\xi_0)$ на периоде $0 - 10\pi$ определяет величину аксептанса $\varepsilon = 1/B_{\text{max}}$ (площади эллипса, деленной на π) [13, стр. 87]. Характер изменения параметров эллипсов захвата А, В и Г от начальной фазы ξ_0 в четырехугольнике (рис. 1) существенно иной, чем в первой области стабильности [13,16]. Поэтому зависимости A, B и Γ от начальной фазы ξ_0 приведены полностью. Параметр Γ имеет размерность $1/r_0^2 [1/m^2]$, параметр $A - \pi f [1/s]$ и параметр $B - 1/(\pi f r_0)^2 [(m/s)^2]$. Здесь $f = 2\pi/\Omega$ — циклическая частота основного ВЧ-напряжения.

На рис. 3 приведены эллипсы захвата для координат xи y при указанных начальных фазах ξ_0 . Смысл этих эллипсов состоит в том, что если начальные скорость и координата при начальной фазе ξ_0 попадают внутрь эллипса, то ион будет совершать колебания с амплитудой менее r_0 , пройдет анализатор и будет зарегистрирован детектором. Эллипсы вращаются с частотой Ω на фазовой плоскости начальных поперечных координат и скоростей.

На рис. 4 показаны предельные аксептансы для вершины **D**, определенные по заданному уровню пропускания 50, 75 и 100% для координат x и y, когда краевые поля отсутствуют ($n_f = 0$) и в точке a, q, соответствующей максимуму пропускания КФМ (рис. 5). Точки на границе контура, определенного, например по уровню пропускания 50%, соответствуют 500 эллипсам из 1000. Все ионы, имеющие начальные положения и скорости, которые попадают в контур 100% на фазовой плоскости, пройдут анализатор без потерь независимо от начальной

Рис. 2. Зависимости параметров эллипсов захвата A, B и Γ от начальной фазы ξ_0 для координат x(a) и y(b) в рабочих точках $a = \pm 0.2331, q = \pm 0.69965$ и при двух значениях сдвига фаз α ; m = 0.02.

фазы влета ионов в ВЧ-поле. Это соответствует коэффициенту пропускания КФМ 100%. Контуры подобны, при изменении разрешающей способности изменяется лишь площадь, ограничиваемая контуром.

Модифицированные контуры пропускания в нижней рабочей вершине **D** на фазовых плоскостях x, $dx/d\xi$ и y, $dy/d\xi$ для уровня пропускания 50% приведены на рис. 6. Как и в случае обычного режима работы, в первой области стабильности [15] величина предельного аксептанса (площадь, ограничиваемая контуром) возрастает с увеличением времени πn_f , достигает максимума и убывает на периоде 10π . С увеличением числа периодов пребывания инов в краевом поле n_f контуры смещаются вниз в сторону отрицательных значений поперечных скоростей. Это предполагает слабую фокусировку входного пучка ионов на вход квадруполя с целью увеличения пропускания КФМ.

Зависимости величин предельных аксептансов S_x и S_y , определенных по уровню пропускания 50%, от числа периодов пребывания ионов в краевой области n_f показаны на рис. 7. Величины (площади) аксептансов S_x и S_v различаются (на этом рисунке) приблизительно на порядок. Величина S_x возрастает на интервале $n_f = 0-3$ и практически не изменяется вплоть до $n_f = 6$. Кривая $S_{v}(n_{f})$ достигает максимума приблизительно при $n_f = 3$. Мерой пропускания КФМ в целом может служить произведение $S_x S_y$ (величина комбинированного аксептанса), которое достигает максимума при $n_f = 3$. Определяет полный аксептанс КФМ величина меньшего аксептанса по у координате. Это имеет место и при обычном режиме сепарации в первой области стабильности [13,15], а также при работе в третьей области стабильности в нижней вершине [18]. Отметим общее свойство входных краевых полей, заключающееся в увеличении ими аксептанса КФМ. Величины S_x и S_y , приведенные на рис. 7 и 3 [18], различаются на два порядка, что связано с различием разрешающей способности: рабочая точка a, q в [18] соответствует низкой разрешающей способности R = 100.

Для проверки правильности модели аксептанса КФМ с параметрическим возбуждением колебаний ионов рассчитывался коэффициент пропускания с учетом краевых полей. Коэффициент пропускания $T = N_{\rm tr}/N$ определяется как доля прошедших ионов через квадрупольный анализатор за единицу времени. N_{tr} — число ионов, траектории которых имеют амплитуду колебаний менее r₀ на отрезке времени $0-n\pi$, где n — число ВЧ-периодов пребывания ионов в фильтре масс, период л соответствует периоду $2\pi/\Omega$ ВЧ-поля. N — число ионов, которые попадают на входную апертуру. В каждую начальную фазу ВЧ-поля $\xi_0 = 0, 1\pi/10, 2\pi/10, \dots, 100\pi/10$ в анализатор влетают 30 ионов со случайным гауссовым распределением начальных координат и скоростей, характеризуемым величинами σ_x и σ_v . Таким образом, каждая точка q_i на кривой пропускания T(q)соответствует расчету N = 3000 траекторий ионов по координатам х и у. Интегрирование уравнений движения (1), (2) и (9), (10) осуществлялось численным

Рис. 3. Эллипсы захвата на фазовых плоскостях поперечных координат и скоростей для указанных на рисунке значений начальной фазы ξ_0 . a = 0.2331, q = 0.69965, m = 0.02, v = 9/10.

Рис. 4. Контуры аксептансов по координатам x(a) и y(b), определенным по уровням пропускания 50, 75 и 100%. a = 0.2331, q = 0.69965. Краевые поля отсутствуют $(n_f = 0)$.

Рис. 5. Форма пика (аппаратная функция) фильтра масс при работе вблизи нижней вершины **D** вдоль линии сканирования $a = 2 \times 0.16658q$ ($R_{0.1} = q/\Delta q = 2690$). Параметры источника ионов: $\sigma_x = 0.015r_0$, $\sigma_v = 0.0041\pi r_0 f$, время сепарации: n = 300 периодов высокочастотного поля.

методом Рунге-Кутта-Нюстрёма-Дортманда-Принса (РК-N-DP) 6(7)-го порядка с переменным шагом интегрирования [15]. На рис. 5 показана форма пика (аппаратная функция анализатора) при относительной высокой разрешающей способности $R_{0.1} = q/\Delta q = 2690$ и работе в нижней вершине **D** четырехугольника стабильности (см. рис. 1).

Рис. 6. Контуры аксептансов по координатам x(a) и y(b), модифицированным краевым полем для указанных на рисунке значений числа n_f периодов высокочастотного поля.

Рис. 7. Величины аксептансов S_x и S_y (площадей, ограниченных контурами, см. рис. 6) и их произведения $S_x S_y$ от числа периодов пребывания ионов в краевом поле. $-\circ - 10^4 S_x$, $-\bullet - 10^4 S_y$, $-\bullet - 10^8 S_x S_y$.

Рис. 8. Влияние фазы влета ξ_0 на коэффициент пропускания *T* фильтра масс.

Для достижения указанной разрешающей способности требуемое время сортировки составляет n = 300 периодов ВЧ-поля. Параметры модели источника ионов: $\sigma_x = 0.015r_0$ — дисперсия начальных положений ионов на входной диафрагме, $\sigma_v = 0.0041\pi r_0 f$ — тепловой разброс ионов массой 2700 Da по поперечным скоростям при комнатной температуре. Время пролета $n_f = 3$ ВЧ-периода ионами краевой области с линейным размером $z_f = 1.5r_0$ соответствует максимуму 50% комбинированного аксептанса (рис. 7).

На рис. 8 показана зависимость коэффициента пропускания T от фазы ξ_0 влета ионов в ВЧ-поле в форме гистограммы. В каждый указанный интервал π (соответствует периоду $2\pi/\Omega$ ВЧ-напряжения) через равные промежутки задавалось 30 начальных фаз и для каждой фазы задавалось 100 случайных начальных положений и поперечных скоростей частицы. Далее рассчитывались 3000 траекторий ионов и определялась доля ионов, имеющих радиальные смещения менее r_0 . Можно видеть, что наибольшее пропускание имеет место, если начальные фазы находятся в интервале от 4π до 7π при сдвиге фаз $\alpha = 0$. Среднее значение коэффициента пропускания за период 10π составляет 34% (отмечено пунктиром).

Влияние времени пролета ионами краевого поля, выраженное в числе n_f периодов ВЧ-поля, на коэффициент пропускания фильтра масс T, работающего с модуляцией ВЧ-напряжения, проиллюстрировано на рис. 9. Поведение зависимостей $T(n_f)$ и $S_x S_y(n_f)$ хорошо согласуется с учетом того, что эмиттанс источника ионов статичен и предельные 50%-ные аксептансы трансформируются при изменении времени пребывания ионов в краевом поле. Это является косвенным подтверждением справедливости модели аксептанса фильтра масс, работающего в четырехугольнике стабильности при параметрическом возбуждении колебаний ионов.

Рис. 9. Влияние краевого поля на коэффициент пропускания фильтра масс в рабочей точке a = 0.2331, q = 0.69963; $n_f \pi$ — время пролета ионами краевого поля $(2\pi n_f \Omega)$.

Если учитывать начальную фазу влета ионов в ВЧ-поле только на интервале π , то пропускание T будет уже не на уровне 30% (рис. 5), а другим. Так, например, если влет ионов осуществляется в интервале $\xi_0 = 5\pi - 6\pi$, оно превысит 90% (рис. 8). Именно такие пропускания демонстрировались, например, в работе [14], где рассмотренный здесь подход (учет фазы на интервале πP) не применялся. Технически таких высоких уровней пропускания можно достичь при фазовом импульсном вводе ионов, что предполагает синхронизацию сдвига фаз и времени ввода пучка ионов в анализатор [19,20].

Обсуждение результатов

Развит метод расчета аксептанса, определенного по заданному уровню пропускания, для фильтра масс с параметрическим резонансным возбуждением колебаний ионов. Ключевым моментом предлагаемого метода является учет набега фазы πn_f ВЧ-поля при движении ионов в краевом поле. Для этого матрица преобразования M_f рассчитывалась за полный интервал начальной фазы 0-10*π*, включая интегрирование уравнений движения (1) и (2) на интервале $0-\pi n_f$. В этом случае матрица $M_f(\xi_0)$ полностью соответствует параметрам эллипсов захвата $A(\xi_0)$, $B(\xi_0)$ и $\Gamma(\xi_0)$ идеального квадрупольного поля ввиду периодичности фазы ξ₀. Данной проблемы не существует при работе в первой области стабильности [17], когда ион пролетает краевое поле за время $k\pi$, где k = 0, 1, 2, ..., и период π соответствует периоду ВЧ-поля. Это подтверждается тем, что использование нашей вычислительной программы дает идентичные результаты для условий работы в первой области [11]. В рассматриваемом случае наименьший период временной функции в фигурных скобках (1) и (2) соответствует $\pi P = 10\pi$, в результате изменение начальной фазы ξ_0 влета ионов в ВЧ-поле также составляет 10 π . Интервал изменения фазы ξ_0 больше оптимального типового времени пролета ($n_f = 3$) краевого поля [10].

В случае импульсного ввода ионов в оптимальную фазу с целью увеличения пропускания КФМ необходимо принимать во внимание сдвиг фаз α между ВЧ-напряжением и модулирующим напряжением [19]. В обычном режиме работы оптимальный интервал фазы ВЧ-напряжения составляет десятые доли ВЧ-периода [13]. При амплитудной модуляции этот интервал увеличивается на порядок и может составлять 2–4 периода ВЧ-поля (рис. 9). Это технически упрощает процесс синхронизации ввода импульсного пучка ионов в анализатор при импульсной ионизации, например пучком лазера [20].

Заключение

Таким образом, установлено, что

— начальная фаза ξ_0 влета ионов изменяется на интервале $0-T_0P$ при параметрическом возбуждении колебаний ионов, где $T_0 = 2\pi/\Omega$ — период ВЧ-напряжения и $\omega/\Omega = K/P$ — простая несократимая дробь, K и P целые числа, K < P;

— для фазового согласования матрицы преобразования $M_f(\xi_0)$ краевого поля с параметрами $A(\xi_0)$, $B(\xi_0)$ и $\Gamma(\xi_0)$ эллипсов захвата полного квадрупольного поля необходимо матрицу $M_f(\xi_0)$ доопределить на интервале $0-\pi P$;

— временной интервал оптимального импульсного ввода ионов в анализатор составляет $(2-4)T_0$;

— необходимо синхронизировать сдвиг фаз α между ВЧ-напряжением и модулирующим сигналом при фазовом вводе ионов в анализатор.

Знание аксептанса необходимо при расчете и создании источника ионов с требуемым эмиттансом с целью увеличения пропускания фильтра масс.

Список литературы

- [1] Devant G. Patent FR. 2, 620, 568. 1989.
- [2] Kozo M. US Patent 5, 227, 629. 1993.
- [3] Kozo M.J. // Mass Spectr. Soc. Jpn. 2009. Vol. 57. N 1. P. 23–29.
- [4] Alfred R.L., Londry F.A., March R.E. // Int. J. Mass Spectr. Ion Proc. 1993. Vol. 124. P. 171–185.
- [5] Sudakov M.Yu., Konenkov N.V., Douglas D.J., Glebova T. // J. Am. Soc. Mass Spectr. 2000. Vol. 11. P. 10–18.
- [6] Konenkov N.V., Sudakov M.Yu., Douglas D.J. // J. Am. Soc. Mass Spectr. 2002. Vol. 13. P. 597–613.
- [7] Paul W., Reinhard H.P., Fon Zhan U. // Z. Phys. 1957. Bd 152. S. 143–182.
- [8] March R.E. Quadrupole Ion Trap Mass Spectr. 2nd Ed. Willey, 2005.
- [9] Fischer E. // Z. Phys. 1958. Bd 156. S. 1–26.
- [10] Konenkov N.V., Cousins L.M., Baranov V.I., Sudakov M.Y. // Int. J. Mass Spectr. 2001. Vol. 208. P. 17–27.

- [11] Страшнов Ю.В., Махмудов М.Н., Коненков Н.В. // ЖТФ. 2009. Т. 79. Вып. 5. С. 95–100.
- [12] Konenkov N.V., Korolkov A.N., Makhmudov M.N. // J. Am. Soc. Mass Spectr. 2005. Vol. 16. P. 379–387.
- [13] Quadrupole Mass Spectrometry and its Applications / Ed. by P.H. Dawson. NY: American Institute of Physics, 1995.
- [14] Hunter K.L., McIntosh B.J. // Int. J. Mass Spectr. Ion Process. 1989. Vol. 87. P. 157–164.
- [15] McIntosh B.J., Hunter K.L. // Int. J. Mass Spectr. Ion Process. 1989. Vol. 87. P. 165–179.
- [16] Todd F.J., Waldren F.M., Freer D.A., Turner J.F. // Ion Phys. 1980. Vol. 35. P. 107–150.
- [17] Wiedemann H. Particle accelerator. Physics I. 2nd Edition. Springer, 2003. P. 152–157.
- [18] Коненков Н.В. // ЖТФ. 1997. Т. 67. Вып. 10. С. 121-124.
- [19] Корольков А.Н., Черняк Е.Я., Страшнов Ю.В., Коненков Н.В. // Масс-спектрометрия. 2009. Т. 6. № 1. С. 53-60.
- [20] *Kuzuya M., Ohoka H., Katoh H.* et al. // Spectrochimica ACTA. Pt B. 1998. Vol. 5 (3). P. 123–129.